Soil biological and biochemical traits linked to nutritional status in grapevine

The purpose of this work was to study vineyards of NE Italy seeking for features associated to the soil or plant compartment that could serve as proxies to infer productivity of the grape. Soils were characterized for physico-chemical properties, mineralization of organic matter by a novel patented...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stevanato,P, Bertaggia,M, Stellin,F, Rizzi,V, Piffanelli,P, Angelini,E, Bertazzon,N, Fornasier,F, Squartini,A, Saccomani,M, Concheri,G
Lenguaje:English
Publicado: Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162014000200013
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The purpose of this work was to study vineyards of NE Italy seeking for features associated to the soil or plant compartment that could serve as proxies to infer productivity of the grape. Soils were characterized for physico-chemical properties, mineralization of organic matter by a novel patented device based on in-situ microbial degradation of buried fibers, bacterial intergenic spacer length diversity (ARISA), enzyme activities and the expression of genes involved in response to abiotic stresses. Significant differences (p<0.05) were observed among vineyards for the parameters evaluated. The groupings obtained by ARISA were coherent with those obtained by PCA of soil properties. Vineyards endowed with higher productivity had soils showing higher enzyme activities along with neutral pH, higher TOC content and appropriate C/N ratio. These soils also showed higher mineralization of organic matter determined the novel in-soil thread degradation method. Grapevines of less productive vineyards had suboptimal leaf nitrogen and sulfur contents and showed up-regulation of WRKY, SuSy, PAL and STS1 genes. Results put in evidence useful correlations with yield that can be obtained up to several months earlier than harvest time upon analyzing selected indicators. An interesting link arises unifying soil biological properties, nutritional status, molecular stress response of grapevine and its production level.