Land use and seasonal effects on a Mediterranean soil bacterial community

To evaluate the effects of management practices and seasons on a soil bacterial community and the composition of ammonia-oxidizing bacteria (AOB), molecular screenings were compared among Mediterranean (Sardinia) soils with different plant covers and different agricultural practices, namely cork oak...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Francioli,D, Ascher,J, Ceccherini,M.T, Pietramellara,G
Lenguaje:English
Publicado: Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162014000300017
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-95162014000300017
record_format dspace
spelling oai:scielo:S0718-951620140003000172015-03-31Land use and seasonal effects on a Mediterranean soil bacterial communityFrancioli,DAscher,JCeccherini,M.TPietramellara,G Microbial biomass PCR-DGGE land management seasonal shifts ammonia oxidizing bacteria pooled soil samples To evaluate the effects of management practices and seasons on a soil bacterial community and the composition of ammonia-oxidizing bacteria (AOB), molecular screenings were compared among Mediterranean (Sardinia) soils with different plant covers and different agricultural practices, namely cork oak forest, tilled/non-tilled vineyard, hay crop and pasture. We compared the fingerprints from both independent replicates and pooled samples to ascertain the best approach for studying the environmental effects on bacterial composition. The soil microbial biomass, which was estimated from the amounts of extracted soil dsDNA, was 2 to 3 folds higher in the spring than in the autumn; in the spring, it was negatively correlated with the intensity of land use. A 16S rDNA DGGE experiment confirmed that both the land use and season markedly affect the composition of the soil bacterial community. Tilled vineyard soil exhibited the lowest similarities in community structures, suggesting that tillage induced the most marked disturbance among the tested land management methods. Distinct AOB populations were found for each type of land use; among these types, the cork oak forest proved to be a protective habitat for AOB against environmental changes. Our results suggest that the comparative community level and group-specific fingerprinting enabled an accurate evaluation of multiple factors in soil bacterial structures when performed with both independent and pooled replicates.info:eu-repo/semantics/openAccessChilean Society of Soil Science / Sociedad Chilena de la Ciencia del SueloJournal of soil science and plant nutrition v.14 n.3 20142014-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162014000300017en10.4067/S0718-95162014005000057
institution Scielo Chile
collection Scielo Chile
language English
topic Microbial biomass
PCR-DGGE
land management
seasonal shifts
ammonia oxidizing bacteria
pooled soil samples
spellingShingle Microbial biomass
PCR-DGGE
land management
seasonal shifts
ammonia oxidizing bacteria
pooled soil samples
Francioli,D
Ascher,J
Ceccherini,M.T
Pietramellara,G
Land use and seasonal effects on a Mediterranean soil bacterial community
description To evaluate the effects of management practices and seasons on a soil bacterial community and the composition of ammonia-oxidizing bacteria (AOB), molecular screenings were compared among Mediterranean (Sardinia) soils with different plant covers and different agricultural practices, namely cork oak forest, tilled/non-tilled vineyard, hay crop and pasture. We compared the fingerprints from both independent replicates and pooled samples to ascertain the best approach for studying the environmental effects on bacterial composition. The soil microbial biomass, which was estimated from the amounts of extracted soil dsDNA, was 2 to 3 folds higher in the spring than in the autumn; in the spring, it was negatively correlated with the intensity of land use. A 16S rDNA DGGE experiment confirmed that both the land use and season markedly affect the composition of the soil bacterial community. Tilled vineyard soil exhibited the lowest similarities in community structures, suggesting that tillage induced the most marked disturbance among the tested land management methods. Distinct AOB populations were found for each type of land use; among these types, the cork oak forest proved to be a protective habitat for AOB against environmental changes. Our results suggest that the comparative community level and group-specific fingerprinting enabled an accurate evaluation of multiple factors in soil bacterial structures when performed with both independent and pooled replicates.
author Francioli,D
Ascher,J
Ceccherini,M.T
Pietramellara,G
author_facet Francioli,D
Ascher,J
Ceccherini,M.T
Pietramellara,G
author_sort Francioli,D
title Land use and seasonal effects on a Mediterranean soil bacterial community
title_short Land use and seasonal effects on a Mediterranean soil bacterial community
title_full Land use and seasonal effects on a Mediterranean soil bacterial community
title_fullStr Land use and seasonal effects on a Mediterranean soil bacterial community
title_full_unstemmed Land use and seasonal effects on a Mediterranean soil bacterial community
title_sort land use and seasonal effects on a mediterranean soil bacterial community
publisher Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
publishDate 2014
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162014000300017
work_keys_str_mv AT franciolid landuseandseasonaleffectsonamediterraneansoilbacterialcommunity
AT ascherj landuseandseasonaleffectsonamediterraneansoilbacterialcommunity
AT ceccherinimt landuseandseasonaleffectsonamediterraneansoilbacterialcommunity
AT pietramellarag landuseandseasonaleffectsonamediterraneansoilbacterialcommunity
_version_ 1714206489038553088