Availability and accumulation of lead for forage grasses in contaminated soil

The forage grasses are explored for the phytoremediation of heavy metals from contaminated areas. The present study evaluates the tolerance of forages grasses to Pb and the availability of Pb for the Mehlich 1, DTPA, and USEPA 3051 and 3052 extraction methods. The forage grasses cultivars Panicum ma...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nascimento,S. S, Silva,E.B, Alleoni,L.R.F, Grazziotti,P.H, Fonseca,F.G, Nardis,B.O
Lenguaje:English
Publicado: Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162014000400003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The forage grasses are explored for the phytoremediation of heavy metals from contaminated areas. The present study evaluates the tolerance of forages grasses to Pb and the availability of Pb for the Mehlich 1, DTPA, and USEPA 3051 and 3052 extraction methods. The forage grasses cultivars Panicum maximum cultivars Aruana and Tanzânia, Brachiaria decumbens cultivar Basilisk, Brachiaria brizantha cultivar Xaraés and Marandu were assessed. Each cultivar was grown in a greenhouse in Diamantina, Brazil, in Typic Hapludox (Oxisol). The Pb was applied to the soil at doses of 0, 45, 90 and 270 mg kg-1 soil in a randomized design with four replications. The experiment was conducted over a 90-day trial period. Increasing Pb doses in the soil caused a reduction of growth in all varieties studied, and the "Basilisk" forage was generally more tolerant to Pb, while the Xaraés forage was generally more susceptible to the addition of Pb. The lower transfer coefficient of the cultivar "Basilisk", due to the high Pb content and accumulation in its roots, makes it the most suitable for phytoremediation programs, with possible uses in pasture areas. None of the varieties can be considered a Pb hyperaccumulator. The Mehlich 1, DTPA, USEPA 3051 and USEPA 3052 extraction methods indicated different doses of Pb in the soil, and the Mehlich 1 method demonstrated the lowest level of metal extraction from the soil. No correlation was observed between the forage grasses growth and the measurement of Pb in soil by the studied extraction methods, especially for the Mehlich 1 and DTPA methods, suggesting the inefficiency of these techniques for determining the phytoavailability of Pb.