Biogeochemical processes at soil-root interface

Rhizosphere is a microsite where interactions among roots, microorganisms, soil constituents (minerals and organic matter), and soil solution take place. Biomolecules produced by plants and microorganisms and soil organic substances are involved in many biogeochemical processes at soil-root interfac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Violante,A, Caporale,A.G
Lenguaje:English
Publicado: Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162015000200010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-95162015000200010
record_format dspace
spelling oai:scielo:S0718-951620150002000102015-09-29Biogeochemical processes at soil-root interfaceViolante,ACaporale,A.G Soil-root interface nanoprecipitates organomineral complexes sorption/desorption nutrients pollutants Rhizosphere is a microsite where interactions among roots, microorganisms, soil constituents (minerals and organic matter), and soil solution take place. Biomolecules produced by plants and microorganisms and soil organic substances are involved in many biogeochemical processes at soil-root interface such as: a) weathering of clay minerals and release of Al and Fe, b) formation of nanoprecipitates and organo-mineral complexes, c) sorption/desorption of cations and anions on/from soil colloids and d) bioavailability of nutrients and pollutants. Many exudates form strong complexes with Fe and Al ions, retard or inhibit their hydrolytic reactions and promote the formation of noncrystalline or short-range ordered Al and Fe nanoprecipitates. The so-called iron plaques, present on many wetland plant roots, are Fe(III)-oxyhydroxides (mainly ferrihydrite). These precipitates may interact with biopolymers (proteins, polysaccharides, DNA, RNA and so on), phyllosilicates, soil organic substances as well as microorganisms forming organo-mineral complexes. Root exudates play a vital role on the sorption/desorption of nutrients and pollutants at soil-root interface. The processes, which affect the sorption of cations and anions on sorbents present in the rhizosphere are particularly complex, being sorption of cations quite different from that of anions. Root exudates usually inhibit the sorption of anions, but may promote or inhibit the sorption of cations. They may desorb, at least partially, nutrients and pollutants previously sorbed on soil components, promoting their bioavailability for plants and microorganisms. Finally, some plants release chelating organic ligands able to complex metals (e.g. Al) which become less toxic. Many factors control these processes, for example; pH, nature and concentration of the biomolecules present in the rhizosphere, nature of sorbent and sorbate, reaction time.info:eu-repo/semantics/openAccessChilean Society of Soil Science / Sociedad Chilena de la Ciencia del SueloJournal of soil science and plant nutrition v.15 n.2 20152015-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162015000200010en10.4067/S0718-95162015005000038
institution Scielo Chile
collection Scielo Chile
language English
topic Soil-root interface
nanoprecipitates
organomineral complexes
sorption/desorption
nutrients
pollutants
spellingShingle Soil-root interface
nanoprecipitates
organomineral complexes
sorption/desorption
nutrients
pollutants
Violante,A
Caporale,A.G
Biogeochemical processes at soil-root interface
description Rhizosphere is a microsite where interactions among roots, microorganisms, soil constituents (minerals and organic matter), and soil solution take place. Biomolecules produced by plants and microorganisms and soil organic substances are involved in many biogeochemical processes at soil-root interface such as: a) weathering of clay minerals and release of Al and Fe, b) formation of nanoprecipitates and organo-mineral complexes, c) sorption/desorption of cations and anions on/from soil colloids and d) bioavailability of nutrients and pollutants. Many exudates form strong complexes with Fe and Al ions, retard or inhibit their hydrolytic reactions and promote the formation of noncrystalline or short-range ordered Al and Fe nanoprecipitates. The so-called iron plaques, present on many wetland plant roots, are Fe(III)-oxyhydroxides (mainly ferrihydrite). These precipitates may interact with biopolymers (proteins, polysaccharides, DNA, RNA and so on), phyllosilicates, soil organic substances as well as microorganisms forming organo-mineral complexes. Root exudates play a vital role on the sorption/desorption of nutrients and pollutants at soil-root interface. The processes, which affect the sorption of cations and anions on sorbents present in the rhizosphere are particularly complex, being sorption of cations quite different from that of anions. Root exudates usually inhibit the sorption of anions, but may promote or inhibit the sorption of cations. They may desorb, at least partially, nutrients and pollutants previously sorbed on soil components, promoting their bioavailability for plants and microorganisms. Finally, some plants release chelating organic ligands able to complex metals (e.g. Al) which become less toxic. Many factors control these processes, for example; pH, nature and concentration of the biomolecules present in the rhizosphere, nature of sorbent and sorbate, reaction time.
author Violante,A
Caporale,A.G
author_facet Violante,A
Caporale,A.G
author_sort Violante,A
title Biogeochemical processes at soil-root interface
title_short Biogeochemical processes at soil-root interface
title_full Biogeochemical processes at soil-root interface
title_fullStr Biogeochemical processes at soil-root interface
title_full_unstemmed Biogeochemical processes at soil-root interface
title_sort biogeochemical processes at soil-root interface
publisher Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162015000200010
work_keys_str_mv AT violantea biogeochemicalprocessesatsoilrootinterface
AT caporaleag biogeochemicalprocessesatsoilrootinterface
_version_ 1714206509372538880