Potential of mycorrhizal inocula to improve growth, nutrition and enzymatic activities in Retama sphaerocarpa compared with chemical fertilization under drought conditions
The growth of Retama sphaerocarpa under drought conditions was similarly increased by arbuscular mycorrhizal (AM) colonization [native AM fungal consortium (M), allochthonous Rhizophagus intraradices (RI)] or H3PO4 application [25 ppm P (1P) or 50 ppm P (2P)]. However, the antioxidant ascorbate pero...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162016000200010 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The growth of Retama sphaerocarpa under drought conditions was similarly increased by arbuscular mycorrhizal (AM) colonization [native AM fungal consortium (M), allochthonous Rhizophagus intraradices (RI)] or H3PO4 application [25 ppm P (1P) or 50 ppm P (2P)]. However, the antioxidant ascorbate peroxidase (APX) activity was increased by P-fertilization and decreased by AM colonization in plants of similar size, which revealed possible AM protection against drought. RI was most effective in enhancing P and it also reduced glutathione reductase (GR) activity compared with plants of similar biomass from other treatments. In a subsequent study the mixture of autochthonous inocula (AM fungal consortium (M) plus native Bacillus thuringiensis (B)) were able to fortify K2SO4 fertilization [5 mM K (1K) or 10 mM K (2K)] on R. sphaerocarpa under drought. Dual inocula increased nutrient content only in plants fertilized with 1K, while 2K even decreased the abundance of arbuscules. The reduced superoxide dismutase (SOD) and APX and the elimination of catalase (CAT) and GR activities found in co-inoculated K-fertilized plants suggested the lowest oxidative stress and the highest potential to cope with drought irrespective of nutrition. In both experiments inocula enhanced soil enzymatic activities, which also contributed to higher performance of inoculated plants under drought. |
---|