Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: Mineralogical characterisation supported by Mössbauer spectroscopy

On this work, the iron oxide mineralogy of Chilean volcanic ashes derived soils have been reviewed, emphasizing on new finding linked to the application of Mössbauer spectroscopy. It has been established that free iron oxide layer contributes with positive variable surface charge to the clay-size so...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pizarro,Carmen, Escudey,Mauricio, Gacitua,Manuel, Fabris,Jose Domingos
Lenguaje:English
Publicado: Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000200007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-95162017000200007
record_format dspace
spelling oai:scielo:S0718-951620170002000072017-08-31Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: Mineralogical characterisation supported by Mössbauer spectroscopyPizarro,CarmenEscudey,MauricioGacitua,ManuelFabris,Jose Domingos Volcanic soil properties iron oxide mineralogy variable surface charge On this work, the iron oxide mineralogy of Chilean volcanic ashes derived soils have been reviewed, emphasizing on new finding linked to the application of Mössbauer spectroscopy. It has been established that free iron oxide layer contributes with positive variable surface charge to the clay-size soil particle, at soil pH. However, the importance of such contribution seems to depend on the evolutionary stage of the different volcanic soil orders, which defines the crystalline degree of their iron oxide contents. Mössbauer spectroscopy complemented with different physical, chemical and instrumental techniques revealed key aspects of iron oxide mineralogy on these Chilean volcanic soils. For instance, results for Ultisol revealed that the evolution of the soil particle could be followed just analysing the main component of their iron oxide mineralogy; thus, the iron oxide mineralogy change when passing from the volcanic ashes (magnetite), to sand-size magnetic separates (partially-oxidized magnetite), to silt-size (strongly-oxidized magnetite), and finally to clay-size (maghemite) soil samples. Therefore, it would seem that physical weathering of the Ultisol produces smaller and more oxidized particles. On the other hand, the Andisol samples, a young volcanic soil compared to Ultisol, seems to have a constant iron oxide mineralogy among all its different particle size fractions: paramagnetic Fe2+ and Fe3+ species with low crystalline degree, the last one possibly assignable to a ferrihydrite-like mineral. Therefore, on the case of Andisols, it seems that the high contents of organic matter somehow prevent mineral evolution towards higher oxidation and more crystalline levels, in agreement with past studies.info:eu-repo/semantics/openAccessChilean Society of Soil Science / Sociedad Chilena de la Ciencia del SueloJournal of soil science and plant nutrition v.17 n.2 20172017-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000200007en10.4067/S0718-95162017005000026
institution Scielo Chile
collection Scielo Chile
language English
topic Volcanic soil properties
iron oxide mineralogy
variable surface charge
spellingShingle Volcanic soil properties
iron oxide mineralogy
variable surface charge
Pizarro,Carmen
Escudey,Mauricio
Gacitua,Manuel
Fabris,Jose Domingos
Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: Mineralogical characterisation supported by Mössbauer spectroscopy
description On this work, the iron oxide mineralogy of Chilean volcanic ashes derived soils have been reviewed, emphasizing on new finding linked to the application of Mössbauer spectroscopy. It has been established that free iron oxide layer contributes with positive variable surface charge to the clay-size soil particle, at soil pH. However, the importance of such contribution seems to depend on the evolutionary stage of the different volcanic soil orders, which defines the crystalline degree of their iron oxide contents. Mössbauer spectroscopy complemented with different physical, chemical and instrumental techniques revealed key aspects of iron oxide mineralogy on these Chilean volcanic soils. For instance, results for Ultisol revealed that the evolution of the soil particle could be followed just analysing the main component of their iron oxide mineralogy; thus, the iron oxide mineralogy change when passing from the volcanic ashes (magnetite), to sand-size magnetic separates (partially-oxidized magnetite), to silt-size (strongly-oxidized magnetite), and finally to clay-size (maghemite) soil samples. Therefore, it would seem that physical weathering of the Ultisol produces smaller and more oxidized particles. On the other hand, the Andisol samples, a young volcanic soil compared to Ultisol, seems to have a constant iron oxide mineralogy among all its different particle size fractions: paramagnetic Fe2+ and Fe3+ species with low crystalline degree, the last one possibly assignable to a ferrihydrite-like mineral. Therefore, on the case of Andisols, it seems that the high contents of organic matter somehow prevent mineral evolution towards higher oxidation and more crystalline levels, in agreement with past studies.
author Pizarro,Carmen
Escudey,Mauricio
Gacitua,Manuel
Fabris,Jose Domingos
author_facet Pizarro,Carmen
Escudey,Mauricio
Gacitua,Manuel
Fabris,Jose Domingos
author_sort Pizarro,Carmen
title Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: Mineralogical characterisation supported by Mössbauer spectroscopy
title_short Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: Mineralogical characterisation supported by Mössbauer spectroscopy
title_full Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: Mineralogical characterisation supported by Mössbauer spectroscopy
title_fullStr Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: Mineralogical characterisation supported by Mössbauer spectroscopy
title_full_unstemmed Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: Mineralogical characterisation supported by Mössbauer spectroscopy
title_sort iron-bearing minerals from soils developing on volcanic materials from southern chile: mineralogical characterisation supported by mössbauer spectroscopy
publisher Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000200007
work_keys_str_mv AT pizarrocarmen ironbearingmineralsfromsoilsdevelopingonvolcanicmaterialsfromsouthernchilemineralogicalcharacterisationsupportedbymossbauerspectroscopy
AT escudeymauricio ironbearingmineralsfromsoilsdevelopingonvolcanicmaterialsfromsouthernchilemineralogicalcharacterisationsupportedbymossbauerspectroscopy
AT gacituamanuel ironbearingmineralsfromsoilsdevelopingonvolcanicmaterialsfromsouthernchilemineralogicalcharacterisationsupportedbymossbauerspectroscopy
AT fabrisjosedomingos ironbearingmineralsfromsoilsdevelopingonvolcanicmaterialsfromsouthernchilemineralogicalcharacterisationsupportedbymossbauerspectroscopy
_version_ 1714206558550753280