Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult
Agricultural organic matter is a major component of organic waste on earth that significantly contributes in environmental pollution. The conversion of organic waste into biochar and addition to soil is the recommended strategy to reduce the negative environmental effects of organic waste and to inc...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000300019 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-95162017000300019 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-951620170003000192017-10-13Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and PlinthudultMuhammad,NiazAziz,RukhsandaBrookes,Philip C.Xu,Jianming Wheat straw biochar Psammaquent Plinthudult Rice yield Microbial community structure Agricultural organic matter is a major component of organic waste on earth that significantly contributes in environmental pollution. The conversion of organic waste into biochar and addition to soil is the recommended strategy to reduce the negative environmental effects of organic waste and to increase the soil fertility. Therefore, in this study, we evaluated the changes in nutrient concentrations, rice yield and microbial community structure in a Psammaquent and Plinthudult at harvest following incorporation of biochar derived from wheat straw. Wheat straw biochar generated at 300-500˚C under oxygen limited conditions was applied, in a greenhouse experiment to a Psammaquent and Plinthudult at a rate of 3% weight/weight (w/w). The biochar addition to both types of soil significantly increased the soil pH from 4.2 to 6.2 and 4.7 to 6.7, total nitrogen by 135 and 37%, and organic carbon by 90 and 80%, in the Psammaquent and Plinthudult, respectively as compared to the respective controls. The dissolved organic nitrogen (DON) was decreased by 24 and 15% and dissolved organic carbon (DOC) by 40 and 44% in Psammaquent and Plinthudult, respectively. The biochar decreased the concentrations of K leached by 24%, B by 25%, Cu by 80%, Mn by 37% and Zn by 33% in the Psammaquent and B by 50%, Cu by 60%, Fe by 43%, Mn by 69% and Zn by 83% in the Plinthudult as compared to the controls. The wheat straw biochar addition to two soils increased the accumulation of Mn, Mo, Na and Zn in both rice straw and grain and decreased the leaching of nutrients, organic carbon and nitrogen at rice harvest and increased the leaching of Ca, Na, and Mg in both Psammaquent and Plinthudult. The biochar increased the pH, TOC and nitrogen in both soils. The biochar significantly changed the PLFA concentration indicating different microbial community pattern in soils growing rice compared to their controls. Thus, the results indicated that wheat straw biochar increased the productivity of rice in the Plinthudult and Psammaquent.info:eu-repo/semantics/openAccessChilean Society of Soil Science / Sociedad Chilena de la Ciencia del SueloJournal of soil science and plant nutrition v.17 n.3 20172017-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000300019en10.4067/S0718-95162017000300019 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Wheat straw biochar Psammaquent Plinthudult Rice yield Microbial community structure |
spellingShingle |
Wheat straw biochar Psammaquent Plinthudult Rice yield Microbial community structure Muhammad,Niaz Aziz,Rukhsanda Brookes,Philip C. Xu,Jianming Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult |
description |
Agricultural organic matter is a major component of organic waste on earth that significantly contributes in environmental pollution. The conversion of organic waste into biochar and addition to soil is the recommended strategy to reduce the negative environmental effects of organic waste and to increase the soil fertility. Therefore, in this study, we evaluated the changes in nutrient concentrations, rice yield and microbial community structure in a Psammaquent and Plinthudult at harvest following incorporation of biochar derived from wheat straw. Wheat straw biochar generated at 300-500˚C under oxygen limited conditions was applied, in a greenhouse experiment to a Psammaquent and Plinthudult at a rate of 3% weight/weight (w/w). The biochar addition to both types of soil significantly increased the soil pH from 4.2 to 6.2 and 4.7 to 6.7, total nitrogen by 135 and 37%, and organic carbon by 90 and 80%, in the Psammaquent and Plinthudult, respectively as compared to the respective controls. The dissolved organic nitrogen (DON) was decreased by 24 and 15% and dissolved organic carbon (DOC) by 40 and 44% in Psammaquent and Plinthudult, respectively. The biochar decreased the concentrations of K leached by 24%, B by 25%, Cu by 80%, Mn by 37% and Zn by 33% in the Psammaquent and B by 50%, Cu by 60%, Fe by 43%, Mn by 69% and Zn by 83% in the Plinthudult as compared to the controls. The wheat straw biochar addition to two soils increased the accumulation of Mn, Mo, Na and Zn in both rice straw and grain and decreased the leaching of nutrients, organic carbon and nitrogen at rice harvest and increased the leaching of Ca, Na, and Mg in both Psammaquent and Plinthudult. The biochar increased the pH, TOC and nitrogen in both soils. The biochar significantly changed the PLFA concentration indicating different microbial community pattern in soils growing rice compared to their controls. Thus, the results indicated that wheat straw biochar increased the productivity of rice in the Plinthudult and Psammaquent. |
author |
Muhammad,Niaz Aziz,Rukhsanda Brookes,Philip C. Xu,Jianming |
author_facet |
Muhammad,Niaz Aziz,Rukhsanda Brookes,Philip C. Xu,Jianming |
author_sort |
Muhammad,Niaz |
title |
Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult |
title_short |
Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult |
title_full |
Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult |
title_fullStr |
Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult |
title_full_unstemmed |
Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult |
title_sort |
impact of wheat straw biochar on yield of rice and some properties of psammaquent and plinthudult |
publisher |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000300019 |
work_keys_str_mv |
AT muhammadniaz impactofwheatstrawbiocharonyieldofriceandsomepropertiesofpsammaquentandplinthudult AT azizrukhsanda impactofwheatstrawbiocharonyieldofriceandsomepropertiesofpsammaquentandplinthudult AT brookesphilipc impactofwheatstrawbiocharonyieldofriceandsomepropertiesofpsammaquentandplinthudult AT xujianming impactofwheatstrawbiocharonyieldofriceandsomepropertiesofpsammaquentandplinthudult |
_version_ |
1714206553792315392 |