Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass
Abstract The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in ryegrass seedlings (Lolium perenne L.) were studied. 100 and 150 μM Cd stress had a detrimental effect on ryegrass seedlings. Exposure of 100 and 150 μM Cd inhibited plant growth, decrease...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162018000100129 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-95162018000100129 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-951620180001001292018-11-21Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrassChen,WeifengDong,YuanjieHu,GuoqingBai,Xiaoying Ryegrass cadmium sodium nitroprusside antioxidative systems phytochelatins glutathione ion accumulation Abstract The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in ryegrass seedlings (Lolium perenne L.) were studied. 100 and 150 μM Cd stress had a detrimental effect on ryegrass seedlings. Exposure of 100 and 150 μM Cd inhibited plant growth, decreased chlorophyll concentration, and reduced the absorption of Fe, Cu and Zn. Excess Cd also altered the activities of antioxidant enzymes, and increased the accumulation of reactive oxygen species (ROS). Exogenous NO alleviated Cd toxicity of ryegrass plants, especially under the stress of 150 μM Cd, as evidenced by improved plant growth and increased concentrations of chlorophyll and mineral nutrients. Exogenous NO also mitigated oxidative stress by regulating the activities of antioxidant enzymes and the contents of non-antioxidants. Moreover, the absorption of Fe, Cu and Zn was increased, indicating that exogenous NO stimulated H+-ATPase activity to promote sequestration or uptake of ions. The applications of NO also reduced the translocation of Cd from roots to the leaves. These results indicate that the mechanisms of NO for mitigating Cd toxicity may be associated with reduced root-to-shoot translocation of Cd and enhanced capacity of antioxidative systems to protect plants from oxidative stress.info:eu-repo/semantics/openAccessChilean Society of Soil Science / Sociedad Chilena de la Ciencia del SueloJournal of soil science and plant nutrition v.18 n.1 20182018-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162018000100129en10.4067/S0718-95162018005000601 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Ryegrass cadmium sodium nitroprusside antioxidative systems phytochelatins glutathione ion accumulation |
spellingShingle |
Ryegrass cadmium sodium nitroprusside antioxidative systems phytochelatins glutathione ion accumulation Chen,Weifeng Dong,Yuanjie Hu,Guoqing Bai,Xiaoying Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass |
description |
Abstract The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in ryegrass seedlings (Lolium perenne L.) were studied. 100 and 150 μM Cd stress had a detrimental effect on ryegrass seedlings. Exposure of 100 and 150 μM Cd inhibited plant growth, decreased chlorophyll concentration, and reduced the absorption of Fe, Cu and Zn. Excess Cd also altered the activities of antioxidant enzymes, and increased the accumulation of reactive oxygen species (ROS). Exogenous NO alleviated Cd toxicity of ryegrass plants, especially under the stress of 150 μM Cd, as evidenced by improved plant growth and increased concentrations of chlorophyll and mineral nutrients. Exogenous NO also mitigated oxidative stress by regulating the activities of antioxidant enzymes and the contents of non-antioxidants. Moreover, the absorption of Fe, Cu and Zn was increased, indicating that exogenous NO stimulated H+-ATPase activity to promote sequestration or uptake of ions. The applications of NO also reduced the translocation of Cd from roots to the leaves. These results indicate that the mechanisms of NO for mitigating Cd toxicity may be associated with reduced root-to-shoot translocation of Cd and enhanced capacity of antioxidative systems to protect plants from oxidative stress. |
author |
Chen,Weifeng Dong,Yuanjie Hu,Guoqing Bai,Xiaoying |
author_facet |
Chen,Weifeng Dong,Yuanjie Hu,Guoqing Bai,Xiaoying |
author_sort |
Chen,Weifeng |
title |
Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass |
title_short |
Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass |
title_full |
Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass |
title_fullStr |
Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass |
title_full_unstemmed |
Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass |
title_sort |
effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass |
publisher |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162018000100129 |
work_keys_str_mv |
AT chenweifeng effectsofexogenousnitricoxideoncadmiumtoxicityandantioxidativesysteminperennialryegrass AT dongyuanjie effectsofexogenousnitricoxideoncadmiumtoxicityandantioxidativesysteminperennialryegrass AT huguoqing effectsofexogenousnitricoxideoncadmiumtoxicityandantioxidativesysteminperennialryegrass AT baixiaoying effectsofexogenousnitricoxideoncadmiumtoxicityandantioxidativesysteminperennialryegrass |
_version_ |
1714206571030904832 |