HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP

This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, S...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: MEDEL,CARLOS A
Langue:English
Publié: Pontificia Universidad Católica de Chile. Instituto de Economía. 2013
Sujets:
Accès en ligne:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-04332013000100005
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, Schwarz, and Hannan-Quinn. The analysis also addresses the role of seasonal adjustment and the Easter effect. The results show that Akaike and Schwarz are better criteria for forecasting when using actual series and Schwarz and Hannan-Quinn are better with seasonally adjusted data. Accounting for the Easter effect improves forecast accuracy for actual and seasonally adjusted data.