HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP
This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, S...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Pontificia Universidad Católica de Chile. Instituto de Economía.
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-04332013000100005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-04332013000100005 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-043320130001000052013-09-24HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDPMEDEL,CARLOS A Data mining forecasting ARIMA seasonal adjustment Easter effect This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, Schwarz, and Hannan-Quinn. The analysis also addresses the role of seasonal adjustment and the Easter effect. The results show that Akaike and Schwarz are better criteria for forecasting when using actual series and Schwarz and Hannan-Quinn are better with seasonally adjusted data. Accounting for the Easter effect improves forecast accuracy for actual and seasonally adjusted data.info:eu-repo/semantics/openAccessPontificia Universidad Católica de Chile. Instituto de Economía.Latin american journal of economics v.50 n.1 20132013-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-04332013000100005en10.7764/LAJE.50.1.135 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Data mining forecasting ARIMA seasonal adjustment Easter effect |
spellingShingle |
Data mining forecasting ARIMA seasonal adjustment Easter effect MEDEL,CARLOS A HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP |
description |
This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, Schwarz, and Hannan-Quinn. The analysis also addresses the role of seasonal adjustment and the Easter effect. The results show that Akaike and Schwarz are better criteria for forecasting when using actual series and Schwarz and Hannan-Quinn are better with seasonally adjusted data. Accounting for the Easter effect improves forecast accuracy for actual and seasonally adjusted data. |
author |
MEDEL,CARLOS A |
author_facet |
MEDEL,CARLOS A |
author_sort |
MEDEL,CARLOS A |
title |
HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP |
title_short |
HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP |
title_full |
HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP |
title_fullStr |
HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP |
title_full_unstemmed |
HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP |
title_sort |
how informative are in-sample information criteria to forecasting?: the case of chilean gdp |
publisher |
Pontificia Universidad Católica de Chile. Instituto de Economía. |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-04332013000100005 |
work_keys_str_mv |
AT medelcarlosa howinformativeareinsampleinformationcriteriatoforecastingthecaseofchileangdp |
_version_ |
1714206732074352640 |