HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP
This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, S...
Guardado en:
Autor principal: | MEDEL,CARLOS A |
---|---|
Lenguaje: | English |
Publicado: |
Pontificia Universidad Católica de Chile. Instituto de Economía.
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-04332013000100005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Proposal to Obtain a Long Quarterly Chilean GDP Series
por: Tena,Juan de Dios, et al.
Publicado: (2006) -
Forecasting the future number of pertussis cases using data from Google Trends
por: Dominik Nann, et al.
Publicado: (2021) -
Models for forecasting water demand using time series analysis: a case study in Southern Brazil
por: Danielle C. M. Ristow, et al.
Publicado: (2021) -
Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA)
por: Deltha Airuzsh Lubis, et al.
Publicado: (2017) -
MODELS OF SCENARIO FORECASTING OF ECONOMIC CRISES ON THE BASIS OF HYBRID APPROACH
por: V. M. Savinova, et al.
Publicado: (2020)