HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP

This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, S...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: MEDEL,CARLOS A
Langue:English
Publié: Pontificia Universidad Católica de Chile. Instituto de Economía. 2013
Sujets:
Accès en ligne:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-04332013000100005
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!