HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP
This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, S...
Enregistré dans:
| Auteur principal: | |
|---|---|
| Langue: | English |
| Publié: |
Pontificia Universidad Católica de Chile. Instituto de Economía.
2013
|
| Sujets: | |
| Accès en ligne: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-04332013000100005 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!