Convergence Conditions for the Secant Method

We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Argyros,Ioannis K, Hilout,Saïd
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100014
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462010000100014
record_format dspace
spelling oai:scielo:S0719-064620100001000142018-10-08Convergence Conditions for the Secant MethodArgyros,Ioannis KHilout,Saïd Secant method Banach space majorizing sequence divided difference Fréchet-derivative We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided in this study.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.1 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100014en10.4067/S0719-06462010000100014
institution Scielo Chile
collection Scielo Chile
language English
topic Secant method
Banach space
majorizing sequence
divided difference
Fréchet-derivative
spellingShingle Secant method
Banach space
majorizing sequence
divided difference
Fréchet-derivative
Argyros,Ioannis K
Hilout,Saïd
Convergence Conditions for the Secant Method
description We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided in this study.
author Argyros,Ioannis K
Hilout,Saïd
author_facet Argyros,Ioannis K
Hilout,Saïd
author_sort Argyros,Ioannis K
title Convergence Conditions for the Secant Method
title_short Convergence Conditions for the Secant Method
title_full Convergence Conditions for the Secant Method
title_fullStr Convergence Conditions for the Secant Method
title_full_unstemmed Convergence Conditions for the Secant Method
title_sort convergence conditions for the secant method
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100014
work_keys_str_mv AT argyrosioannisk convergenceconditionsforthesecantmethod
AT hiloutsaid convergenceconditionsforthesecantmethod
_version_ 1714206763991957504