Convergence Conditions for the Secant Method
We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided d...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100014 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462010000100014 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620100001000142018-10-08Convergence Conditions for the Secant MethodArgyros,Ioannis KHilout,Saïd Secant method Banach space majorizing sequence divided difference Fréchet-derivative We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided in this study.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.1 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100014en10.4067/S0719-06462010000100014 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Secant method Banach space majorizing sequence divided difference Fréchet-derivative |
spellingShingle |
Secant method Banach space majorizing sequence divided difference Fréchet-derivative Argyros,Ioannis K Hilout,Saïd Convergence Conditions for the Secant Method |
description |
We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided in this study. |
author |
Argyros,Ioannis K Hilout,Saïd |
author_facet |
Argyros,Ioannis K Hilout,Saïd |
author_sort |
Argyros,Ioannis K |
title |
Convergence Conditions for the Secant Method |
title_short |
Convergence Conditions for the Secant Method |
title_full |
Convergence Conditions for the Secant Method |
title_fullStr |
Convergence Conditions for the Secant Method |
title_full_unstemmed |
Convergence Conditions for the Secant Method |
title_sort |
convergence conditions for the secant method |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2010 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100014 |
work_keys_str_mv |
AT argyrosioannisk convergenceconditionsforthesecantmethod AT hiloutsaid convergenceconditionsforthesecantmethod |
_version_ |
1714206763991957504 |