Projective Squares in and Bott’s Localization Formula

We give an explicit description of the Hilbert scheme that parametrizes the closed 0-dimensional subschemes of degree 4 in the projective plane that allows us to afford a natural embedding in a product of Grassmann varieties. We also use this description to explain how to apply Bott’s loca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rojas,Jacqueline, Mendoza,Ramón, Silva,Eben da
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100017
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We give an explicit description of the Hilbert scheme that parametrizes the closed 0-dimensional subschemes of degree 4 in the projective plane that allows us to afford a natural embedding in a product of Grassmann varieties. We also use this description to explain how to apply Bott&rsquo;s localization formula (introduced in 1967 in Bott&rsquo;s work &#091;2&#093;) to give an answer for an enumerative question as used by the first time by Ellingsrud and Str<img border=0 width=12 height=15 src="http:/fbpe/img/cubo/v12n1/img47.jpg">mme in &#091;8&#093; to compute the number of twisted cubics on a general Calabi-Yau threefold which is a complete intersection in some projective space and used later by Kontsevich in &#091;16&#093; to count rational plane curves of degree d passing through 3d - 1 points in general position in the plane.