Projective Squares in and Bott’s Localization Formula

We give an explicit description of the Hilbert scheme that parametrizes the closed 0-dimensional subschemes of degree 4 in the projective plane that allows us to afford a natural embedding in a product of Grassmann varieties. We also use this description to explain how to apply Bott’s loca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rojas,Jacqueline, Mendoza,Ramón, Silva,Eben da
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100017
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462010000100017
record_format dspace
spelling oai:scielo:S0719-064620100001000172018-10-08Projective Squares in and Bott&rsquo;s Localization FormulaRojas,JacquelineMendoza,RamónSilva,Eben da Hilbert scheme Bott&rsquo;s localization formula We give an explicit description of the Hilbert scheme that parametrizes the closed 0-dimensional subschemes of degree 4 in the projective plane that allows us to afford a natural embedding in a product of Grassmann varieties. We also use this description to explain how to apply Bott&rsquo;s localization formula (introduced in 1967 in Bott&rsquo;s work &#091;2&#093;) to give an answer for an enumerative question as used by the first time by Ellingsrud and Str<img border=0 width=12 height=15 src="http:/fbpe/img/cubo/v12n1/img47.jpg">mme in &#091;8&#093; to compute the number of twisted cubics on a general Calabi-Yau threefold which is a complete intersection in some projective space and used later by Kontsevich in &#091;16&#093; to count rational plane curves of degree d passing through 3d - 1 points in general position in the plane.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.1 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100017en10.4067/S0719-06462010000100017
institution Scielo Chile
collection Scielo Chile
language English
topic Hilbert scheme
Bott&rsquo;s localization formula
spellingShingle Hilbert scheme
Bott&rsquo;s localization formula
Rojas,Jacqueline
Mendoza,Ramón
Silva,Eben da
Projective Squares in and Bott&rsquo;s Localization Formula
description We give an explicit description of the Hilbert scheme that parametrizes the closed 0-dimensional subschemes of degree 4 in the projective plane that allows us to afford a natural embedding in a product of Grassmann varieties. We also use this description to explain how to apply Bott&rsquo;s localization formula (introduced in 1967 in Bott&rsquo;s work &#091;2&#093;) to give an answer for an enumerative question as used by the first time by Ellingsrud and Str<img border=0 width=12 height=15 src="http:/fbpe/img/cubo/v12n1/img47.jpg">mme in &#091;8&#093; to compute the number of twisted cubics on a general Calabi-Yau threefold which is a complete intersection in some projective space and used later by Kontsevich in &#091;16&#093; to count rational plane curves of degree d passing through 3d - 1 points in general position in the plane.
author Rojas,Jacqueline
Mendoza,Ramón
Silva,Eben da
author_facet Rojas,Jacqueline
Mendoza,Ramón
Silva,Eben da
author_sort Rojas,Jacqueline
title Projective Squares in and Bott&rsquo;s Localization Formula
title_short Projective Squares in and Bott&rsquo;s Localization Formula
title_full Projective Squares in and Bott&rsquo;s Localization Formula
title_fullStr Projective Squares in and Bott&rsquo;s Localization Formula
title_full_unstemmed Projective Squares in and Bott&rsquo;s Localization Formula
title_sort projective squares in and bott&rsquo;s localization formula
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100017
work_keys_str_mv AT rojasjacqueline projectivesquaresinandbottrsquoslocalizationformula
AT mendozaramon projectivesquaresinandbottrsquoslocalizationformula
AT silvaebenda projectivesquaresinandbottrsquoslocalizationformula
_version_ 1714206764539314176