Generalized quadrangles and subconstituent algebra ¹

The point graph of a generalized quadrangle GQ (s, t) is a strongly regular graph G = srg( ?, ?, ?, μ) whose parameters depend on s and t. By a detailed analysis of the adjacency matrix we compute the Terwilliger algebra of this kind of graphs (and denoted it by T ). We find that there are...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Levstein,Fernando, Maldonado,Carolina
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The point graph of a generalized quadrangle GQ (s, t) is a strongly regular graph G = srg( ?, ?, ?, μ) whose parameters depend on s and t. By a detailed analysis of the adjacency matrix we compute the Terwilliger algebra of this kind of graphs (and denoted it by T ). We find that there are only two non-isomorphic Terwilliger algebras for all the generalized quadrangles. The two classes correspond to wether s² = t or not. We decompose the algebra into direct sum of simple ideals. Considering the action ? × Cx→ Cx we find the decomposition into irreducible T -submodules of Cx (where X is the set of vertices of the G ).