Generalized quadrangles and subconstituent algebra ¹

The point graph of a generalized quadrangle GQ (s, t) is a strongly regular graph G = srg( ?, ?, ?, μ) whose parameters depend on s and t. By a detailed analysis of the adjacency matrix we compute the Terwilliger algebra of this kind of graphs (and denoted it by T ). We find that there are...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Levstein,Fernando, Maldonado,Carolina
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462010000200005
record_format dspace
spelling oai:scielo:S0719-064620100002000052018-10-08Generalized quadrangles and subconstituent algebra ¹Levstein,FernandoMaldonado,Carolina strongly regular graphs neralized quadrangles Terwilliger algebra The point graph of a generalized quadrangle GQ (s, t) is a strongly regular graph G = srg( ?, ?, ?, μ) whose parameters depend on s and t. By a detailed analysis of the adjacency matrix we compute the Terwilliger algebra of this kind of graphs (and denoted it by T ). We find that there are only two non-isomorphic Terwilliger algebras for all the generalized quadrangles. The two classes correspond to wether s² = t or not. We decompose the algebra into direct sum of simple ideals. Considering the action ? × Cx→ Cx we find the decomposition into irreducible T -submodules of Cx (where X is the set of vertices of the G ).info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.2 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200005en10.4067/S0719-06462010000200005
institution Scielo Chile
collection Scielo Chile
language English
topic strongly regular graphs
neralized quadrangles
Terwilliger algebra
spellingShingle strongly regular graphs
neralized quadrangles
Terwilliger algebra
Levstein,Fernando
Maldonado,Carolina
Generalized quadrangles and subconstituent algebra ¹
description The point graph of a generalized quadrangle GQ (s, t) is a strongly regular graph G = srg( ?, ?, ?, μ) whose parameters depend on s and t. By a detailed analysis of the adjacency matrix we compute the Terwilliger algebra of this kind of graphs (and denoted it by T ). We find that there are only two non-isomorphic Terwilliger algebras for all the generalized quadrangles. The two classes correspond to wether s² = t or not. We decompose the algebra into direct sum of simple ideals. Considering the action ? × Cx→ Cx we find the decomposition into irreducible T -submodules of Cx (where X is the set of vertices of the G ).
author Levstein,Fernando
Maldonado,Carolina
author_facet Levstein,Fernando
Maldonado,Carolina
author_sort Levstein,Fernando
title Generalized quadrangles and subconstituent algebra ¹
title_short Generalized quadrangles and subconstituent algebra ¹
title_full Generalized quadrangles and subconstituent algebra ¹
title_fullStr Generalized quadrangles and subconstituent algebra ¹
title_full_unstemmed Generalized quadrangles and subconstituent algebra ¹
title_sort generalized quadrangles and subconstituent algebra ¹
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200005
work_keys_str_mv AT levsteinfernando generalizedquadranglesandsubconstituentalgebra1
AT maldonadocarolina generalizedquadranglesandsubconstituentalgebra1
_version_ 1714206765528121344