On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
Let for s ∈ {0, 1, ...,m+ 1} (m ≥ 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, ∈ IN be such that 0 ≤ r ≤ m + 1, p < q and r + 2q ≤ m + 1. T...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462010000200010 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620100002000102018-10-08On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean spaceDelanghe,Richard Clifford analysis Moisil-Théodoresco systems conjugate harmonic funtions harmonic potentials polynomial bases Let for s ∈ {0, 1, ...,m+ 1} (m ≥ 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, ∈ IN be such that 0 ≤ r ≤ m + 1, p < q and r + 2q ≤ m + 1. The associated linear system of first order partial differential equations derived from the equation ∂xW = 0 where W is IR(r,p,q)0,m+1 = ∑q j=p ⊕IR(r+2j)0,m+1 -valued and ∂x is the Dirac operator in IRm+1, is called a generalized Moisil-Théodoresco system of type (r, p, q) in IRm+1. For k ∈ N, k ≥ 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denotes the space of IR(r,p,q)0,m+1-valued homogeneous polynomials Wc of degree k in IRm+1 satisfying ∂xWx = 0. A characterization of Wk∈ MT+(m + 1; k;IR(r,p,q)0,m+1) is given in terms of a harmonic potential Hk+1 belonging to a subclass of IR(r,p,q)0,m -valued solid harmonics of degree (k + 1) in IRm+1. Furthermore, it is proved that each Wk∈ MT+(m+ 1; k; IR(r,p,q)0,m+1) admits a primitive Wk+1 ∈ MT+(m+ 1; k + 1; IR(r,p,q)0,m+1). Special attention is paid to the lower dimensional cases IR³ and IR4. In particular, a method is developed for constructing bases for the spaces MT+(4; k; IR(r,p,q)0,4), r being even.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.2 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010en10.4067/S0719-06462010000200010 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Clifford analysis Moisil-Théodoresco systems conjugate harmonic funtions harmonic potentials polynomial bases |
spellingShingle |
Clifford analysis Moisil-Théodoresco systems conjugate harmonic funtions harmonic potentials polynomial bases Delanghe,Richard On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space |
description |
Let for s ∈ {0, 1, ...,m+ 1} (m ≥ 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, ∈ IN be such that 0 ≤ r ≤ m + 1, p < q and r + 2q ≤ m + 1. The associated linear system of first order partial differential equations derived from the equation ∂xW = 0 where W is IR(r,p,q)0,m+1 = ∑q j=p ⊕IR(r+2j)0,m+1 -valued and ∂x is the Dirac operator in IRm+1, is called a generalized Moisil-Théodoresco system of type (r, p, q) in IRm+1. For k ∈ N, k ≥ 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denotes the space of IR(r,p,q)0,m+1-valued homogeneous polynomials Wc of degree k in IRm+1 satisfying ∂xWx = 0. A characterization of Wk∈ MT+(m + 1; k;IR(r,p,q)0,m+1) is given in terms of a harmonic potential Hk+1 belonging to a subclass of IR(r,p,q)0,m -valued solid harmonics of degree (k + 1) in IRm+1. Furthermore, it is proved that each Wk∈ MT+(m+ 1; k; IR(r,p,q)0,m+1) admits a primitive Wk+1 ∈ MT+(m+ 1; k + 1; IR(r,p,q)0,m+1). Special attention is paid to the lower dimensional cases IR³ and IR4. In particular, a method is developed for constructing bases for the spaces MT+(4; k; IR(r,p,q)0,4), r being even. |
author |
Delanghe,Richard |
author_facet |
Delanghe,Richard |
author_sort |
Delanghe,Richard |
title |
On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space |
title_short |
On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space |
title_full |
On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space |
title_fullStr |
On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space |
title_full_unstemmed |
On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space |
title_sort |
on homogeneous polynomial solutions of generalized moisil-théodoresco systems in euclidean space |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2010 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010 |
work_keys_str_mv |
AT delangherichard onhomogeneouspolynomialsolutionsofgeneralizedmoisiltheodorescosystemsineuclideanspace |
_version_ |
1714206766384807936 |