On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space

Let for s &#8712; {0, 1, ...,m+ 1} (m &#8805; 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, &#8712; IN be such that 0 &#8804; r &#8804; m + 1, p < q and r + 2q &#8804; m + 1. T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Delanghe,Richard
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462010000200010
record_format dspace
spelling oai:scielo:S0719-064620100002000102018-10-08On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean spaceDelanghe,Richard Clifford analysis Moisil-Théodoresco systems conjugate harmonic funtions harmonic potentials polynomial bases Let for s &#8712; {0, 1, ...,m+ 1} (m &#8805; 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, &#8712; IN be such that 0 &#8804; r &#8804; m + 1, p < q and r + 2q &#8804; m + 1. The associated linear system of first order partial differential equations derived from the equation &#8706;xW = 0 where W is IR(r,p,q)0,m+1 = &#8721;q j=p &#8853;IR(r+2j)0,m+1 -valued and &#8706;x is the Dirac operator in IRm+1, is called a generalized Moisil-Théodoresco system of type (r, p, q) in IRm+1. For k &#8712; N, k &#8805; 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denotes the space of IR(r,p,q)0,m+1-valued homogeneous polynomials Wc of degree k in IRm+1 satisfying &#8706;xWx = 0. A characterization of Wk&#8712; MT+(m + 1; k;IR(r,p,q)0,m+1) is given in terms of a harmonic potential Hk+1 belonging to a subclass of IR(r,p,q)0,m -valued solid harmonics of degree (k + 1) in IRm+1. Furthermore, it is proved that each Wk&#8712; MT+(m+ 1; k; IR(r,p,q)0,m+1) admits a primitive Wk+1 &#8712; MT+(m+ 1; k + 1; IR(r,p,q)0,m+1). Special attention is paid to the lower dimensional cases IR³ and IR4. In particular, a method is developed for constructing bases for the spaces MT+(4; k; IR(r,p,q)0,4), r being even.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.2 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010en10.4067/S0719-06462010000200010
institution Scielo Chile
collection Scielo Chile
language English
topic Clifford analysis
Moisil-Théodoresco systems
conjugate harmonic funtions
harmonic potentials
polynomial bases
spellingShingle Clifford analysis
Moisil-Théodoresco systems
conjugate harmonic funtions
harmonic potentials
polynomial bases
Delanghe,Richard
On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
description Let for s &#8712; {0, 1, ...,m+ 1} (m &#8805; 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, &#8712; IN be such that 0 &#8804; r &#8804; m + 1, p < q and r + 2q &#8804; m + 1. The associated linear system of first order partial differential equations derived from the equation &#8706;xW = 0 where W is IR(r,p,q)0,m+1 = &#8721;q j=p &#8853;IR(r+2j)0,m+1 -valued and &#8706;x is the Dirac operator in IRm+1, is called a generalized Moisil-Théodoresco system of type (r, p, q) in IRm+1. For k &#8712; N, k &#8805; 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denotes the space of IR(r,p,q)0,m+1-valued homogeneous polynomials Wc of degree k in IRm+1 satisfying &#8706;xWx = 0. A characterization of Wk&#8712; MT+(m + 1; k;IR(r,p,q)0,m+1) is given in terms of a harmonic potential Hk+1 belonging to a subclass of IR(r,p,q)0,m -valued solid harmonics of degree (k + 1) in IRm+1. Furthermore, it is proved that each Wk&#8712; MT+(m+ 1; k; IR(r,p,q)0,m+1) admits a primitive Wk+1 &#8712; MT+(m+ 1; k + 1; IR(r,p,q)0,m+1). Special attention is paid to the lower dimensional cases IR³ and IR4. In particular, a method is developed for constructing bases for the spaces MT+(4; k; IR(r,p,q)0,4), r being even.
author Delanghe,Richard
author_facet Delanghe,Richard
author_sort Delanghe,Richard
title On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_short On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_full On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_fullStr On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_full_unstemmed On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
title_sort on homogeneous polynomial solutions of generalized moisil-théodoresco systems in euclidean space
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200010
work_keys_str_mv AT delangherichard onhomogeneouspolynomialsolutionsofgeneralizedmoisiltheodorescosystemsineuclideanspace
_version_ 1714206766384807936