On The Group of Strong Symplectic Homeomorphisms
We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω)...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω). |
---|