On The Group of Strong Symplectic Homeomorphisms

We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: BANYAGA,AUGUSTIN
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462010000300004
record_format dspace
spelling oai:scielo:S0719-064620100003000042018-10-08On The Group of Strong Symplectic HomeomorphismsBANYAGA,AUGUSTIN Hamiltonian homeomorphisms hamiltonian topology symplectic topology stromg symplectic homeomorphisms C0 symplectic topology We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω).info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.3 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004en10.4067/S0719-06462010000300004
institution Scielo Chile
collection Scielo Chile
language English
topic Hamiltonian homeomorphisms
hamiltonian topology
symplectic topology
stromg symplectic homeomorphisms
C0 symplectic topology
spellingShingle Hamiltonian homeomorphisms
hamiltonian topology
symplectic topology
stromg symplectic homeomorphisms
C0 symplectic topology
BANYAGA,AUGUSTIN
On The Group of Strong Symplectic Homeomorphisms
description We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω).
author BANYAGA,AUGUSTIN
author_facet BANYAGA,AUGUSTIN
author_sort BANYAGA,AUGUSTIN
title On The Group of Strong Symplectic Homeomorphisms
title_short On The Group of Strong Symplectic Homeomorphisms
title_full On The Group of Strong Symplectic Homeomorphisms
title_fullStr On The Group of Strong Symplectic Homeomorphisms
title_full_unstemmed On The Group of Strong Symplectic Homeomorphisms
title_sort on the group of strong symplectic homeomorphisms
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004
work_keys_str_mv AT banyagaaugustin onthegroupofstrongsymplectichomeomorphisms
_version_ 1714206768384442368