On The Group of Strong Symplectic Homeomorphisms
We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω)...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462010000300004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620100003000042018-10-08On The Group of Strong Symplectic HomeomorphismsBANYAGA,AUGUSTIN Hamiltonian homeomorphisms hamiltonian topology symplectic topology stromg symplectic homeomorphisms C0 symplectic topology We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω).info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.3 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004en10.4067/S0719-06462010000300004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Hamiltonian homeomorphisms hamiltonian topology symplectic topology stromg symplectic homeomorphisms C0 symplectic topology |
spellingShingle |
Hamiltonian homeomorphisms hamiltonian topology symplectic topology stromg symplectic homeomorphisms C0 symplectic topology BANYAGA,AUGUSTIN On The Group of Strong Symplectic Homeomorphisms |
description |
We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω). |
author |
BANYAGA,AUGUSTIN |
author_facet |
BANYAGA,AUGUSTIN |
author_sort |
BANYAGA,AUGUSTIN |
title |
On The Group of Strong Symplectic Homeomorphisms |
title_short |
On The Group of Strong Symplectic Homeomorphisms |
title_full |
On The Group of Strong Symplectic Homeomorphisms |
title_fullStr |
On The Group of Strong Symplectic Homeomorphisms |
title_full_unstemmed |
On The Group of Strong Symplectic Homeomorphisms |
title_sort |
on the group of strong symplectic homeomorphisms |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2010 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004 |
work_keys_str_mv |
AT banyagaaugustin onthegroupofstrongsymplectichomeomorphisms |
_version_ |
1714206768384442368 |