The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the i...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462010000300006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620100003000062018-10-08The Semigroup and the Inverse of the Laplacian on the Heisenberg GroupDASGUPTA,APARAJITAWONG,M.W Heisenberg group Laplacian parametrized partial differential operators Hermite functions Fourier-Wigner transforms heat equation one parameter semigroup inverse of Laplacian Sobolev spaces By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the inverse of Lt . Using these formulas and estimates, we obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Laplacian.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.3 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006en10.4067/S0719-06462010000300006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Heisenberg group Laplacian parametrized partial differential operators Hermite functions Fourier-Wigner transforms heat equation one parameter semigroup inverse of Laplacian Sobolev spaces |
spellingShingle |
Heisenberg group Laplacian parametrized partial differential operators Hermite functions Fourier-Wigner transforms heat equation one parameter semigroup inverse of Laplacian Sobolev spaces DASGUPTA,APARAJITA WONG,M.W The Semigroup and the Inverse of the Laplacian on the Heisenberg Group |
description |
By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the inverse of Lt . Using these formulas and estimates, we obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Laplacian. |
author |
DASGUPTA,APARAJITA WONG,M.W |
author_facet |
DASGUPTA,APARAJITA WONG,M.W |
author_sort |
DASGUPTA,APARAJITA |
title |
The Semigroup and the Inverse of the Laplacian on the Heisenberg Group |
title_short |
The Semigroup and the Inverse of the Laplacian on the Heisenberg Group |
title_full |
The Semigroup and the Inverse of the Laplacian on the Heisenberg Group |
title_fullStr |
The Semigroup and the Inverse of the Laplacian on the Heisenberg Group |
title_full_unstemmed |
The Semigroup and the Inverse of the Laplacian on the Heisenberg Group |
title_sort |
semigroup and the inverse of the laplacian on the heisenberg group |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2010 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006 |
work_keys_str_mv |
AT dasguptaaparajita thesemigroupandtheinverseofthelaplacianontheheisenberggroup AT wongmw thesemigroupandtheinverseofthelaplacianontheheisenberggroup AT dasguptaaparajita semigroupandtheinverseofthelaplacianontheheisenberggroup AT wongmw semigroupandtheinverseofthelaplacianontheheisenberggroup |
_version_ |
1714206768721035264 |