The Semigroup and the Inverse of the Laplacian on the Heisenberg Group

By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: DASGUPTA,APARAJITA, WONG,M.W
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462010000300006
record_format dspace
spelling oai:scielo:S0719-064620100003000062018-10-08The Semigroup and the Inverse of the Laplacian on the Heisenberg GroupDASGUPTA,APARAJITAWONG,M.W Heisenberg group Laplacian parametrized partial differential operators Hermite functions Fourier-Wigner transforms heat equation one parameter semigroup inverse of Laplacian Sobolev spaces By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the inverse of Lt . Using these formulas and estimates, we obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Laplacian.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.3 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006en10.4067/S0719-06462010000300006
institution Scielo Chile
collection Scielo Chile
language English
topic Heisenberg group
Laplacian
parametrized partial differential operators
Hermite functions
Fourier-Wigner transforms
heat equation
one parameter semigroup
inverse of Laplacian
Sobolev spaces
spellingShingle Heisenberg group
Laplacian
parametrized partial differential operators
Hermite functions
Fourier-Wigner transforms
heat equation
one parameter semigroup
inverse of Laplacian
Sobolev spaces
DASGUPTA,APARAJITA
WONG,M.W
The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
description By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the inverse of Lt . Using these formulas and estimates, we obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Laplacian.
author DASGUPTA,APARAJITA
WONG,M.W
author_facet DASGUPTA,APARAJITA
WONG,M.W
author_sort DASGUPTA,APARAJITA
title The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
title_short The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
title_full The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
title_fullStr The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
title_full_unstemmed The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
title_sort semigroup and the inverse of the laplacian on the heisenberg group
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006
work_keys_str_mv AT dasguptaaparajita thesemigroupandtheinverseofthelaplacianontheheisenberggroup
AT wongmw thesemigroupandtheinverseofthelaplacianontheheisenberggroup
AT dasguptaaparajita semigroupandtheinverseofthelaplacianontheheisenberggroup
AT wongmw semigroupandtheinverseofthelaplacianontheheisenberggroup
_version_ 1714206768721035264