The Semigroup and the Inverse of the Laplacian on the Heisenberg Group
By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the i...
Guardado en:
Autores principales: | DASGUPTA,APARAJITA, WONG,M.W |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The hypoelliptic Laplacian and Ray-Singer metrics
por: Bismut, Jean-Michel
Publicado: (2008) -
EXISTENCE OF SOLUTIONS OF SEMILINEAR SYSTEMS IN
por: HIDALGO,RUBÉN, et al.
Publicado: (2008) -
Fractional N-Laplacian boundary value problems with jumping nonlinearities in the fractional Orlicz–Sobolev spaces
por: Q-Heung Choi, et al.
Publicado: (2021) -
The largest Laplacian and adjacency indices of complete caterpillars of fixed diameter
por: Abreu,Nair, et al.
Publicado: (2015) -
New bounds on the distance Laplacian and distance signless Laplacian spectral radii
por: Díaz,Roberto C., et al.
Publicado: (2019)