On the Weyl Transform with Symbol in the Gel'fand-Shilov Space and its Dual Space
In this paper, we claim two subjects. One is that the Weyl transform with symbol in the Gel'fand-Shilov space l r r , r ≥ 1/2 , is a trace class operator. The other one is that the Weyl transform with symbol in the generalized function (l r r )1, r ≥ 1/2 , is a continuous...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300015 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462010000300015 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620100003000152018-10-08On the Weyl Transform with Symbol in the Gel'fand-Shilov Space and its Dual SpaceOKA,YASUYUKI Weyl transform Gel'fand-Shilov space Fourier-Wigner transform trace class operator Schwartz's kernel theorem In this paper, we claim two subjects. One is that the Weyl transform with symbol in the Gel'fand-Shilov space l r r , r ≥ 1/2 , is a trace class operator. The other one is that the Weyl transform with symbol in the generalized function (l r r )1, r ≥ 1/2 , is a continuous linear transformation from the Gel'fand-Shilov space l r r to (l r r )¹. As r > 1, Z. Lozanov- Crvenkovic and D. Perišic have proved in [6] this result. Our second claim includes their result.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.12 n.3 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300015en10.4067/S0719-06462010000300015 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Weyl transform Gel'fand-Shilov space Fourier-Wigner transform trace class operator Schwartz's kernel theorem |
spellingShingle |
Weyl transform Gel'fand-Shilov space Fourier-Wigner transform trace class operator Schwartz's kernel theorem OKA,YASUYUKI On the Weyl Transform with Symbol in the Gel'fand-Shilov Space and its Dual Space |
description |
In this paper, we claim two subjects. One is that the Weyl transform with symbol in the Gel'fand-Shilov space l r r , r ≥ 1/2 , is a trace class operator. The other one is that the Weyl transform with symbol in the generalized function (l r r )1, r ≥ 1/2 , is a continuous linear transformation from the Gel'fand-Shilov space l r r to (l r r )¹. As r > 1, Z. Lozanov- Crvenkovic and D. Perišic have proved in [6] this result. Our second claim includes their result. |
author |
OKA,YASUYUKI |
author_facet |
OKA,YASUYUKI |
author_sort |
OKA,YASUYUKI |
title |
On the Weyl Transform with Symbol in the Gel'fand-Shilov Space and its Dual Space |
title_short |
On the Weyl Transform with Symbol in the Gel'fand-Shilov Space and its Dual Space |
title_full |
On the Weyl Transform with Symbol in the Gel'fand-Shilov Space and its Dual Space |
title_fullStr |
On the Weyl Transform with Symbol in the Gel'fand-Shilov Space and its Dual Space |
title_full_unstemmed |
On the Weyl Transform with Symbol in the Gel'fand-Shilov Space and its Dual Space |
title_sort |
on the weyl transform with symbol in the gel'fand-shilov space and its dual space |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2010 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300015 |
work_keys_str_mv |
AT okayasuyuki ontheweyltransformwithsymbolinthegel39fandshilovspaceanditsdualspace |
_version_ |
1714206770240421888 |