On the solution of generalized equations and variational inequalities

Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maxi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Argyros,Ioannis K, Hilout,Saïd
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maximal monotone operator defined on a Hilbert space. The sufficient convergence conditions are weaker than the corresponding ones given in the literature for the Kantorovich theorem on a Hilbert space. However, the convergence was shown to be only linear. In this study, we show under the same conditions, the quadratic instead of the linear convergenve of the generalized Newton iteration involved.