On the solution of generalized equations and variational inequalities
Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maxi...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462011000100004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620110001000042018-10-08On the solution of generalized equations and variational inequalitiesArgyros,Ioannis KHilout,Saïd Generalized equation variational inequality nonlinear complementarity problem nonlinear operator equation Kantorovich theorem generalized Newton’s method center-Lipschitz condition Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maximal monotone operator defined on a Hilbert space. The sufficient convergence conditions are weaker than the corresponding ones given in the literature for the Kantorovich theorem on a Hilbert space. However, the convergence was shown to be only linear. In this study, we show under the same conditions, the quadratic instead of the linear convergenve of the generalized Newton iteration involved.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.13 n.1 20112011-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100004en10.4067/S0719-06462011000100004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Generalized equation variational inequality nonlinear complementarity problem nonlinear operator equation Kantorovich theorem generalized Newton’s method center-Lipschitz condition |
spellingShingle |
Generalized equation variational inequality nonlinear complementarity problem nonlinear operator equation Kantorovich theorem generalized Newton’s method center-Lipschitz condition Argyros,Ioannis K Hilout,Saïd On the solution of generalized equations and variational inequalities |
description |
Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maximal monotone operator defined on a Hilbert space. The sufficient convergence conditions are weaker than the corresponding ones given in the literature for the Kantorovich theorem on a Hilbert space. However, the convergence was shown to be only linear. In this study, we show under the same conditions, the quadratic instead of the linear convergenve of the generalized Newton iteration involved. |
author |
Argyros,Ioannis K Hilout,Saïd |
author_facet |
Argyros,Ioannis K Hilout,Saïd |
author_sort |
Argyros,Ioannis K |
title |
On the solution of generalized equations and variational inequalities |
title_short |
On the solution of generalized equations and variational inequalities |
title_full |
On the solution of generalized equations and variational inequalities |
title_fullStr |
On the solution of generalized equations and variational inequalities |
title_full_unstemmed |
On the solution of generalized equations and variational inequalities |
title_sort |
on the solution of generalized equations and variational inequalities |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2011 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100004 |
work_keys_str_mv |
AT argyrosioannisk onthesolutionofgeneralizedequationsandvariationalinequalities AT hiloutsaid onthesolutionofgeneralizedequationsandvariationalinequalities |
_version_ |
1714206770934579200 |