On the solution of generalized equations and variational inequalities

Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maxi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Argyros,Ioannis K, Hilout,Saïd
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462011000100004
record_format dspace
spelling oai:scielo:S0719-064620110001000042018-10-08On the solution of generalized equations and variational inequalitiesArgyros,Ioannis KHilout,Saïd Generalized equation variational inequality nonlinear complementarity problem nonlinear operator equation Kantorovich theorem generalized Newton’s method center-Lipschitz condition Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maximal monotone operator defined on a Hilbert space. The sufficient convergence conditions are weaker than the corresponding ones given in the literature for the Kantorovich theorem on a Hilbert space. However, the convergence was shown to be only linear. In this study, we show under the same conditions, the quadratic instead of the linear convergenve of the generalized Newton iteration involved.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.13 n.1 20112011-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100004en10.4067/S0719-06462011000100004
institution Scielo Chile
collection Scielo Chile
language English
topic Generalized equation
variational inequality
nonlinear complementarity problem
nonlinear operator equation
Kantorovich theorem
generalized Newton’s method
center-Lipschitz condition
spellingShingle Generalized equation
variational inequality
nonlinear complementarity problem
nonlinear operator equation
Kantorovich theorem
generalized Newton’s method
center-Lipschitz condition
Argyros,Ioannis K
Hilout,Saïd
On the solution of generalized equations and variational inequalities
description Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maximal monotone operator defined on a Hilbert space. The sufficient convergence conditions are weaker than the corresponding ones given in the literature for the Kantorovich theorem on a Hilbert space. However, the convergence was shown to be only linear. In this study, we show under the same conditions, the quadratic instead of the linear convergenve of the generalized Newton iteration involved.
author Argyros,Ioannis K
Hilout,Saïd
author_facet Argyros,Ioannis K
Hilout,Saïd
author_sort Argyros,Ioannis K
title On the solution of generalized equations and variational inequalities
title_short On the solution of generalized equations and variational inequalities
title_full On the solution of generalized equations and variational inequalities
title_fullStr On the solution of generalized equations and variational inequalities
title_full_unstemmed On the solution of generalized equations and variational inequalities
title_sort on the solution of generalized equations and variational inequalities
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2011
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100004
work_keys_str_mv AT argyrosioannisk onthesolutionofgeneralizedequationsandvariationalinequalities
AT hiloutsaid onthesolutionofgeneralizedequationsandvariationalinequalities
_version_ 1714206770934579200