Homogeneous Besov Spaces associated with the spherical mean operator
We define and study homogeneous Besov spaces associated with the spherical mean operator. We establish some results of completeness, continuous embeddings and density of subspaces. Next, we define a discrete equivalent norm on this space and we give other properties.
Guardado en:
Autores principales: | Rachdi,L.T, Rouz,A |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000200001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On degree of approximation of Fourier series of functions in Besov Space using Nörlund mean
por: Padhy,Birupakhya Prasad, et al.
Publicado: (2021) -
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
por: Nguyen Anh Dao, et al.
Publicado: (2021) -
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
por: Ziwei Li, et al.
Publicado: (2021) -
Variation inequalities for rough singular integrals and their commutators on Morrey spaces and Besov spaces
por: Zhang Xiao, et al.
Publicado: (2021) -
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
por: Saksman Eero, et al.
Publicado: (2017)