Closure of Pointed Cones and Maximum Principle in Hilbert Spaces
We prove, in a Hilbert space setting, that all targets of the minimum norm optimal control problems reachable with inputs of minimum norm p are support points for the the set reachable by inputs with norm bounded by p. This amount to say that the Maximum Principle always holds in Hilbert Spaces.
Guardado en:
Autor principal: | d’Alessandro,Paolo |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000200004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Immediate Derivation of Maximum Principle in Banach spaces, Assuming Reflexive Input and State Spaces
por: d’Alessandro,Paolo
Publicado: (2012) -
New inequalities for weaving frames in Hilbert spaces
por: Yuxiang Xu, et al.
Publicado: (2021) -
A generalization of variant of Wilson's type Hilbert space valued functional equations
por: Dimou,Hajira, et al.
Publicado: (2017) -
Strong Maximum Principle for Viscosity Solutions of Fully Nonlinear Cooperative Elliptic Systems
por: Georgi Boyadzhiev, et al.
Publicado: (2021) -
Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law
por: Ilwoo Cho
Publicado: (2021)