On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible

We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-typ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Argyros,Ioannis K, Hilout,Saïd
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-type methods &#0911]-[12]. We also provide weaker sufficient convergence conditions, and finer error bound on the distances involved (under the same computational cost) than [1]-[12], in some intersting cases. Numerical examples are also provided in this study.