On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-typ...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462011000300001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620110003000012018-10-08On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertibleArgyros,Ioannis KHilout,Saïd Newton-type methods Banach space small divisors non-invertible operators semilocal convergence Newton-Kantorovich-type hypothesis. We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-type methods Ώ]-[12]. We also provide weaker sufficient convergence conditions, and finer error bound on the distances involved (under the same computational cost) than [1]-[12], in some intersting cases. Numerical examples are also provided in this study.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.13 n.3 20112011-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300001en10.4067/S0719-06462011000300001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Newton-type methods Banach space small divisors non-invertible operators semilocal convergence Newton-Kantorovich-type hypothesis. |
spellingShingle |
Newton-type methods Banach space small divisors non-invertible operators semilocal convergence Newton-Kantorovich-type hypothesis. Argyros,Ioannis K Hilout,Saïd On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible |
description |
We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-type methods Ώ]-[12]. We also provide weaker sufficient convergence conditions, and finer error bound on the distances involved (under the same computational cost) than [1]-[12], in some intersting cases. Numerical examples are also provided in this study. |
author |
Argyros,Ioannis K Hilout,Saïd |
author_facet |
Argyros,Ioannis K Hilout,Saïd |
author_sort |
Argyros,Ioannis K |
title |
On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible |
title_short |
On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible |
title_full |
On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible |
title_fullStr |
On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible |
title_full_unstemmed |
On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible |
title_sort |
on the semilocal convergence of newton-type methods, when the derivative is not continuously invertible |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2011 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300001 |
work_keys_str_mv |
AT argyrosioannisk onthesemilocalconvergenceofnewtontypemethodswhenthederivativeisnotcontinuouslyinvertible AT hiloutsaid onthesemilocalconvergenceofnewtontypemethodswhenthederivativeisnotcontinuouslyinvertible |
_version_ |
1714206773635710976 |