On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible

We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-typ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Argyros,Ioannis K, Hilout,Saïd
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462011000300001
record_format dspace
spelling oai:scielo:S0719-064620110003000012018-10-08On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertibleArgyros,Ioannis KHilout,Saïd Newton-type methods Banach space small divisors non-invertible operators semilocal convergence Newton-Kantorovich-type hypothesis. We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-type methods &#0911]-[12]. We also provide weaker sufficient convergence conditions, and finer error bound on the distances involved (under the same computational cost) than [1]-[12], in some intersting cases. Numerical examples are also provided in this study.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.13 n.3 20112011-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300001en10.4067/S0719-06462011000300001
institution Scielo Chile
collection Scielo Chile
language English
topic Newton-type methods
Banach space
small divisors
non-invertible operators
semilocal convergence
Newton-Kantorovich-type hypothesis.
spellingShingle Newton-type methods
Banach space
small divisors
non-invertible operators
semilocal convergence
Newton-Kantorovich-type hypothesis.
Argyros,Ioannis K
Hilout,Saïd
On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
description We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-type methods &#0911]-[12]. We also provide weaker sufficient convergence conditions, and finer error bound on the distances involved (under the same computational cost) than [1]-[12], in some intersting cases. Numerical examples are also provided in this study.
author Argyros,Ioannis K
Hilout,Saïd
author_facet Argyros,Ioannis K
Hilout,Saïd
author_sort Argyros,Ioannis K
title On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
title_short On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
title_full On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
title_fullStr On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
title_full_unstemmed On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
title_sort on the semilocal convergence of newton-type methods, when the derivative is not continuously invertible
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2011
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300001
work_keys_str_mv AT argyrosioannisk onthesemilocalconvergenceofnewtontypemethodswhenthederivativeisnotcontinuouslyinvertible
AT hiloutsaid onthesemilocalconvergenceofnewtontypemethodswhenthederivativeisnotcontinuouslyinvertible
_version_ 1714206773635710976