On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-typ...
Guardado en:
Autores principales: | Argyros,Ioannis K, Hilout,Saïd |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
CONVERGENCE OF NEWTON'S METHOD UNDER THE GAMMA CONDITION
por: ARGYROS,IOANNIS K
Publicado: (2006) -
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
por: ARGYROS,IOANNIS K, et al.
Publicado: (2008) -
A new convergence analysis for the two-step Newton method of order three
por: Argyros,I. K, et al.
Publicado: (2013) -
An Improved Convergence and Complexity Analysis for the Interpolatory Newton Method
por: Argyros,Ioannis K
Publicado: (2010) -
On the Gauss-Newton method for solving equations
por: Argyros,Ioaniss K, et al.
Publicado: (2012)