Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks
General framework for the generalized proximal point algorithm, based on the notion of (H,r)- monotonicity, is developed. The linear convergence analysis for the generalized proximal point algorithm to the context of solving a class of nonlinear variational inclusions is examined, The obtained resul...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300010 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462011000300010 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620110003000102018-10-08Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity FrameworksVerma,Ram U General cocoerciveness Variational inclusions Maximal monotone mapping (H,r) - monotone mapping Generalized proximal point algorithm Generalized resolvent operator. General framework for the generalized proximal point algorithm, based on the notion of (H,r)- monotonicity, is developed. The linear convergence analysis for the generalized proximal point algorithm to the context of solving a class of nonlinear variational inclusions is examined, The obtained results generalize and unify a wide range of problems to the context of achieving the linear convergence for proximal point algorithms.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.13 n.3 20112011-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300010en10.4067/S0719-06462011000300010 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
General cocoerciveness Variational inclusions Maximal monotone mapping (H,r) - monotone mapping Generalized proximal point algorithm Generalized resolvent operator. |
spellingShingle |
General cocoerciveness Variational inclusions Maximal monotone mapping (H,r) - monotone mapping Generalized proximal point algorithm Generalized resolvent operator. Verma,Ram U Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks |
description |
General framework for the generalized proximal point algorithm, based on the notion of (H,r)- monotonicity, is developed. The linear convergence analysis for the generalized proximal point algorithm to the context of solving a class of nonlinear variational inclusions is examined, The obtained results generalize and unify a wide range of problems to the context of achieving the linear convergence for proximal point algorithms. |
author |
Verma,Ram U |
author_facet |
Verma,Ram U |
author_sort |
Verma,Ram U |
title |
Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks |
title_short |
Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks |
title_full |
Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks |
title_fullStr |
Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks |
title_full_unstemmed |
Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks |
title_sort |
linear convergence analysis for general proximal point algorithms involving (h,η)- monotonicity frameworks |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2011 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000300010 |
work_keys_str_mv |
AT vermaramu linearconvergenceanalysisforgeneralproximalpointalgorithmsinvolvingh951monotonicityframeworks |
_version_ |
1714206775175020544 |