Spectral shift function for slowly varying perturbation of periodic Schrödinger operators

In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dimassi,Mouez, Zerzeri,Maher
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P0 + &#966; (hx); P0 = -&#916;+ v(x)) ; where<img border=0 width=189 height=35 id="_x0000_i1030" src="http:/fbpe/img/cubo/v14n1/art04-01.jpg"> is a decreasing function, O (|x|-&#948;) for some &#948;> n and h is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice T in Rn. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(h).