Spectral shift function for slowly varying perturbation of periodic Schrödinger operators

In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dimassi,Mouez, Zerzeri,Maher
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462012000100004
record_format dspace
spelling oai:scielo:S0719-064620120001000042018-10-08Spectral shift function for slowly varying perturbation of periodic Schrödinger operatorsDimassi,MouezZerzeri,Maher Periodic Schrödinger operator spectral shift function asymptotic expansions limiting absorption theorem In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P0 + &#966; (hx); P0 = -&#916;+ v(x)) ; where<img border=0 width=189 height=35 id="_x0000_i1030" src="http:/fbpe/img/cubo/v14n1/art04-01.jpg"> is a decreasing function, O (|x|-&#948;) for some &#948;> n and h is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice T in Rn. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(h).info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.14 n.1 20122012-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100004en10.4067/S0719-06462012000100004
institution Scielo Chile
collection Scielo Chile
language English
topic Periodic Schrödinger operator
spectral shift function
asymptotic expansions
limiting absorption theorem
spellingShingle Periodic Schrödinger operator
spectral shift function
asymptotic expansions
limiting absorption theorem
Dimassi,Mouez
Zerzeri,Maher
Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
description In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P0 + &#966; (hx); P0 = -&#916;+ v(x)) ; where<img border=0 width=189 height=35 id="_x0000_i1030" src="http:/fbpe/img/cubo/v14n1/art04-01.jpg"> is a decreasing function, O (|x|-&#948;) for some &#948;> n and h is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice T in Rn. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(h).
author Dimassi,Mouez
Zerzeri,Maher
author_facet Dimassi,Mouez
Zerzeri,Maher
author_sort Dimassi,Mouez
title Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_short Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_full Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_fullStr Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_full_unstemmed Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_sort spectral shift function for slowly varying perturbation of periodic schrödinger operators
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100004
work_keys_str_mv AT dimassimouez spectralshiftfunctionforslowlyvaryingperturbationofperiodicschrodingeroperators
AT zerzerimaher spectralshiftfunctionforslowlyvaryingperturbationofperiodicschrodingeroperators
_version_ 1714206775915315200