Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings

Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent resul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Danchev,Peter
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462012000100005
record_format dspace
spelling oai:scielo:S0719-064620120001000052018-10-08Units in Abelian Group Algebras Over Direct Products of Indecomposable RingsDanchev,Peter groups rings group rings indecomposable rings units direct decompositions isomorphisms Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.14 n.1 20122012-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005en10.4067/S0719-06462012000100005
institution Scielo Chile
collection Scielo Chile
language English
topic groups
rings
group rings
indecomposable rings
units
direct decompositions
isomorphisms
spellingShingle groups
rings
group rings
indecomposable rings
units
direct decompositions
isomorphisms
Danchev,Peter
Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
description Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).
author Danchev,Peter
author_facet Danchev,Peter
author_sort Danchev,Peter
title Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_short Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_full Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_fullStr Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_full_unstemmed Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_sort units in abelian group algebras over direct products of indecomposable rings
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005
work_keys_str_mv AT danchevpeter unitsinabeliangroupalgebrasoverdirectproductsofindecomposablerings
_version_ 1714206776095670272