Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. Based on fractional calculus theory we derive fractional Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operato...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000300005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462012000300005 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620120003000052018-10-08Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operatorsAnastassiou,George A Neural Network Fractional Approximation Voro-novskaya Asymptotic Expansion fractional derivative Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. Based on fractional calculus theory we derive fractional Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operator.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.14 n.3 20122012-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000300005en10.4067/S0719-06462012000300005 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Neural Network Fractional Approximation Voro-novskaya Asymptotic Expansion fractional derivative |
spellingShingle |
Neural Network Fractional Approximation Voro-novskaya Asymptotic Expansion fractional derivative Anastassiou,George A Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators |
description |
Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. Based on fractional calculus theory we derive fractional Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operator. |
author |
Anastassiou,George A |
author_facet |
Anastassiou,George A |
author_sort |
Anastassiou,George A |
title |
Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators |
title_short |
Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators |
title_full |
Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators |
title_fullStr |
Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators |
title_full_unstemmed |
Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators |
title_sort |
fractional voronovskaya type asymptotic expansions for quasi-interpolation neural network operators |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2012 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000300005 |
work_keys_str_mv |
AT anastassiougeorgea fractionalvoronovskayatypeasymptoticexpansionsforquasiinterpolationneuralnetworkoperators |
_version_ |
1714206779455307776 |