Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators

Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. Based on fractional calculus theory we derive fractional Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operato...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Anastassiou,George A
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000300005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462012000300005
record_format dspace
spelling oai:scielo:S0719-064620120003000052018-10-08Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operatorsAnastassiou,George A Neural Network Fractional Approximation Voro-novskaya Asymptotic Expansion fractional derivative Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. Based on fractional calculus theory we derive fractional Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operator.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.14 n.3 20122012-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000300005en10.4067/S0719-06462012000300005
institution Scielo Chile
collection Scielo Chile
language English
topic Neural Network Fractional Approximation
Voro-novskaya Asymptotic Expansion
fractional derivative
spellingShingle Neural Network Fractional Approximation
Voro-novskaya Asymptotic Expansion
fractional derivative
Anastassiou,George A
Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
description Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. Based on fractional calculus theory we derive fractional Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operator.
author Anastassiou,George A
author_facet Anastassiou,George A
author_sort Anastassiou,George A
title Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
title_short Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
title_full Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
title_fullStr Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
title_full_unstemmed Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
title_sort fractional voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000300005
work_keys_str_mv AT anastassiougeorgea fractionalvoronovskayatypeasymptoticexpansionsforquasiinterpolationneuralnetworkoperators
_version_ 1714206779455307776