EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION

In this paper, we study the existence of entire solutions for the following elliptic system &#9651;mu = p(x) f (v), &#9651;lv = q (x) g (u), x E R N, where 1 < m, l <&#8734;, f, g are continuous and non-decreasing on [0,&#8734;), satisfy f (t) &gt; 0, g(t) &gt; 0 for al...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhang,Yuan, Yang,Zuodong
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100008
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we study the existence of entire solutions for the following elliptic system &#9651;mu = p(x) f (v), &#9651;lv = q (x) g (u), x E R N, where 1 < m, l <&#8734;, f, g are continuous and non-decreasing on [0,&#8734;), satisfy f (t) &gt; 0, g(t) &gt; 0 for all t &gt; 0 and the Keller-Osserman condition. We establish conditions on p and q that are necessary for the existence of positive solutions, bounded and unbounded, of the given equation.