EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION
In this paper, we study the existence of entire solutions for the following elliptic system △mu = p(x) f (v), △lv = q (x) g (u), x E R N, where 1 < m, l <∞, f, g are continuous and non-decreasing on [0,∞), satisfy f (t) > 0, g(t) > 0 for al...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, we study the existence of entire solutions for the following elliptic system △mu = p(x) f (v), △lv = q (x) g (u), x E R N, where 1 < m, l <∞, f, g are continuous and non-decreasing on [0,∞), satisfy f (t) > 0, g(t) > 0 for all t > 0 and the Keller-Osserman condition. We establish conditions on p and q that are necessary for the existence of positive solutions, bounded and unbounded, of the given equation. |
---|