EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION

In this paper, we study the existence of entire solutions for the following elliptic system &#9651;mu = p(x) f (v), &#9651;lv = q (x) g (u), x E R N, where 1 < m, l <&#8734;, f, g are continuous and non-decreasing on [0,&#8734;), satisfy f (t) &gt; 0, g(t) &gt; 0 for al...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhang,Yuan, Yang,Zuodong
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100008
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462013000100008
record_format dspace
spelling oai:scielo:S0719-064620130001000082018-10-08EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITIONZhang,YuanYang,Zuodong quasi-linear elliptic system sub/super-solution large solution existence In this paper, we study the existence of entire solutions for the following elliptic system &#9651;mu = p(x) f (v), &#9651;lv = q (x) g (u), x E R N, where 1 < m, l <&#8734;, f, g are continuous and non-decreasing on [0,&#8734;), satisfy f (t) &gt; 0, g(t) &gt; 0 for all t &gt; 0 and the Keller-Osserman condition. We establish conditions on p and q that are necessary for the existence of positive solutions, bounded and unbounded, of the given equation.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.15 n.1 20132013-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100008en10.4067/S0719-06462013000100008
institution Scielo Chile
collection Scielo Chile
language English
topic quasi-linear elliptic system
sub/super-solution
large solution
existence
spellingShingle quasi-linear elliptic system
sub/super-solution
large solution
existence
Zhang,Yuan
Yang,Zuodong
EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION
description In this paper, we study the existence of entire solutions for the following elliptic system &#9651;mu = p(x) f (v), &#9651;lv = q (x) g (u), x E R N, where 1 < m, l <&#8734;, f, g are continuous and non-decreasing on [0,&#8734;), satisfy f (t) &gt; 0, g(t) &gt; 0 for all t &gt; 0 and the Keller-Osserman condition. We establish conditions on p and q that are necessary for the existence of positive solutions, bounded and unbounded, of the given equation.
author Zhang,Yuan
Yang,Zuodong
author_facet Zhang,Yuan
Yang,Zuodong
author_sort Zhang,Yuan
title EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION
title_short EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION
title_full EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION
title_fullStr EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION
title_full_unstemmed EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION
title_sort existence of entire solutions for quasilinear eliptic systems under keller-osserman condition
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100008
work_keys_str_mv AT zhangyuan existenceofentiresolutionsforquasilinearelipticsystemsunderkellerossermancondition
AT yangzuodong existenceofentiresolutionsforquasilinearelipticsystemsunderkellerossermancondition
_version_ 1714206781914218496