EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION
In this paper, we study the existence of entire solutions for the following elliptic system △mu = p(x) f (v), △lv = q (x) g (u), x E R N, where 1 < m, l <∞, f, g are continuous and non-decreasing on [0,∞), satisfy f (t) > 0, g(t) > 0 for al...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462013000100008 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620130001000082018-10-08EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITIONZhang,YuanYang,Zuodong quasi-linear elliptic system sub/super-solution large solution existence In this paper, we study the existence of entire solutions for the following elliptic system △mu = p(x) f (v), △lv = q (x) g (u), x E R N, where 1 < m, l <∞, f, g are continuous and non-decreasing on [0,∞), satisfy f (t) > 0, g(t) > 0 for all t > 0 and the Keller-Osserman condition. We establish conditions on p and q that are necessary for the existence of positive solutions, bounded and unbounded, of the given equation.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.15 n.1 20132013-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100008en10.4067/S0719-06462013000100008 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
quasi-linear elliptic system sub/super-solution large solution existence |
spellingShingle |
quasi-linear elliptic system sub/super-solution large solution existence Zhang,Yuan Yang,Zuodong EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION |
description |
In this paper, we study the existence of entire solutions for the following elliptic system △mu = p(x) f (v), △lv = q (x) g (u), x E R N, where 1 < m, l <∞, f, g are continuous and non-decreasing on [0,∞), satisfy f (t) > 0, g(t) > 0 for all t > 0 and the Keller-Osserman condition. We establish conditions on p and q that are necessary for the existence of positive solutions, bounded and unbounded, of the given equation. |
author |
Zhang,Yuan Yang,Zuodong |
author_facet |
Zhang,Yuan Yang,Zuodong |
author_sort |
Zhang,Yuan |
title |
EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION |
title_short |
EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION |
title_full |
EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION |
title_fullStr |
EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION |
title_full_unstemmed |
EXISTENCE OF ENTIRE SOLUTIONS FOR QUASILINEAR ELIPTIC SYSTEMS UNDER KELLER-OSSERMAN CONDITION |
title_sort |
existence of entire solutions for quasilinear eliptic systems under keller-osserman condition |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100008 |
work_keys_str_mv |
AT zhangyuan existenceofentiresolutionsforquasilinearelipticsystemsunderkellerossermancondition AT yangzuodong existenceofentiresolutionsforquasilinearelipticsystemsunderkellerossermancondition |
_version_ |
1714206781914218496 |