DISCRETE ALMOST PERIODIC OPERATORS

This paper deals with discrete almost periodic linear operators in the space of bounded sequences. We study the invertibility of such operators in that space, as well as in the space of almost periodic sequences. One of main results is a discrete version of wellknown First Favard Theorem, and is bas...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pankov,Alexander
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100012
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462013000100012
record_format dspace
spelling oai:scielo:S0719-064620130001000122018-10-08DISCRETE ALMOST PERIODIC OPERATORSPankov,Alexander Almost periodic sequence discrete operator Favard condition This paper deals with discrete almost periodic linear operators in the space of bounded sequences. We study the invertibility of such operators in that space, as well as in the space of almost periodic sequences. One of main results is a discrete version of wellknown First Favard Theorem, and is based on the notion of the envelope of an almost periodic operator. Another result is restricted to finite order operators. It characterizes the invertibility in therms of the operator in question only.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.15 n.1 20132013-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100012en10.4067/S0719-06462013000100012
institution Scielo Chile
collection Scielo Chile
language English
topic Almost periodic sequence
discrete operator
Favard condition
spellingShingle Almost periodic sequence
discrete operator
Favard condition
Pankov,Alexander
DISCRETE ALMOST PERIODIC OPERATORS
description This paper deals with discrete almost periodic linear operators in the space of bounded sequences. We study the invertibility of such operators in that space, as well as in the space of almost periodic sequences. One of main results is a discrete version of wellknown First Favard Theorem, and is based on the notion of the envelope of an almost periodic operator. Another result is restricted to finite order operators. It characterizes the invertibility in therms of the operator in question only.
author Pankov,Alexander
author_facet Pankov,Alexander
author_sort Pankov,Alexander
title DISCRETE ALMOST PERIODIC OPERATORS
title_short DISCRETE ALMOST PERIODIC OPERATORS
title_full DISCRETE ALMOST PERIODIC OPERATORS
title_fullStr DISCRETE ALMOST PERIODIC OPERATORS
title_full_unstemmed DISCRETE ALMOST PERIODIC OPERATORS
title_sort discrete almost periodic operators
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000100012
work_keys_str_mv AT pankovalexander discretealmostperiodicoperators
_version_ 1714206782594744320