NONNEGATIVE SOLUTIONS OF QUASILINEAR ELLIPTIC PROBLEMS WITH SUBLINEAR INDEFINITE NONLINEARITY

We study the existence, nonexistence and multiplicity of nonnegative solutions for the quasilinear elliptic problem <img border=0 width=438 height=87 id="_x0000_i1040" src="http:/fbpe/img/cubo/v15n2/art02-f1.jpg"> where <img border=0 width=21 height=25 id="_x0000_i1...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wang,Weihui, Yang,Zuodong
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000200002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We study the existence, nonexistence and multiplicity of nonnegative solutions for the quasilinear elliptic problem <img border=0 width=438 height=87 id="_x0000_i1040" src="http:/fbpe/img/cubo/v15n2/art02-f1.jpg"> where <img border=0 width=21 height=25 id="_x0000_i1039" src="http:/fbpe/img/cubo/v15n2/art02-02.jpg"> is a bounded domain in R N, <img border=0 width=14 height=15 id="_x0000_i1038" src="http:/fbpe/img/cubo/v15n2/art02-01.jpg"> &gt; 0 is a parameter, <img border=0 width=15 height=25 id="_x0000_i1037" src="http:/fbpe/img/cubo/v15n2/art02-03.jpg"> p = div (|<img border=0 width=18 height=19 id="_x0000_i1036" src="http:/fbpe/img/cubo/v15n2/art02-04.jpg"> u|p-2<img border=0 width=18 height=19 id="_x0000_i1035" src="http:/fbpe/img/cubo/v15n2/art02-04.jpg"> u) is the p-Laplace operator of u, 1 < p < N, 0 < q < p-1 < r <p*-1, a (x), b (x) are bounded functions, the coefficient b (x) is assumed to be nonnegative and a (x) is allowed to change sign. The results of the semilinear equations are extended to the quasilinear problem.