SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
In this paper we shall continue to study from [4], for k = -1 and k = 5, the infinite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the product of any two different components...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000200008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462013000200008 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620130002000082018-10-08SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERSČerin,Zvonko D (k)-triple Fibonacci numbers Lucas numbers square symmetric sum alternating sum product component In this paper we shall continue to study from [4], for k = -1 and k = 5, the infinite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the product of any two different components of them increased by k are squares. The sequences A and B are built from the Fibonacci numbers Fn while the sequences C and D from the Lucas numbers Ln. We show some interesting properties of these sequences that give various methods how to get squares from them.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.15 n.2 20132013-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000200008en10.4067/S0719-06462013000200008 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
D (k)-triple Fibonacci numbers Lucas numbers square symmetric sum alternating sum product component |
spellingShingle |
D (k)-triple Fibonacci numbers Lucas numbers square symmetric sum alternating sum product component Čerin,Zvonko SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS |
description |
In this paper we shall continue to study from [4], for k = -1 and k = 5, the infinite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the product of any two different components of them increased by k are squares. The sequences A and B are built from the Fibonacci numbers Fn while the sequences C and D from the Lucas numbers Ln. We show some interesting properties of these sequences that give various methods how to get squares from them. |
author |
Čerin,Zvonko |
author_facet |
Čerin,Zvonko |
author_sort |
Čerin,Zvonko |
title |
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS |
title_short |
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS |
title_full |
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS |
title_fullStr |
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS |
title_full_unstemmed |
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS |
title_sort |
squares in euler triples from fibonacci and lucas numbers |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000200008 |
work_keys_str_mv |
AT 268erinzvonko squaresineulertriplesfromfibonacciandlucasnumbers |
_version_ |
1714206783967330304 |