SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS

In this paper we shall continue to study from [4], for k = -1 and k = 5, the infinite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the product of any two different components...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Čerin,Zvonko
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000200008
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462013000200008
record_format dspace
spelling oai:scielo:S0719-064620130002000082018-10-08SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERSČerin,Zvonko D (k)-triple Fibonacci numbers Lucas numbers square symmetric sum alternating sum product component In this paper we shall continue to study from [4], for k = -1 and k = 5, the infinite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the product of any two different components of them increased by k are squares. The sequences A and B are built from the Fibonacci numbers Fn while the sequences C and D from the Lucas numbers Ln. We show some interesting properties of these sequences that give various methods how to get squares from them.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.15 n.2 20132013-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000200008en10.4067/S0719-06462013000200008
institution Scielo Chile
collection Scielo Chile
language English
topic D (k)-triple
Fibonacci numbers
Lucas numbers
square
symmetric sum
alternating sum
product
component
spellingShingle D (k)-triple
Fibonacci numbers
Lucas numbers
square
symmetric sum
alternating sum
product
component
Čerin,Zvonko
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
description In this paper we shall continue to study from [4], for k = -1 and k = 5, the infinite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the product of any two different components of them increased by k are squares. The sequences A and B are built from the Fibonacci numbers Fn while the sequences C and D from the Lucas numbers Ln. We show some interesting properties of these sequences that give various methods how to get squares from them.
author Čerin,Zvonko
author_facet Čerin,Zvonko
author_sort Čerin,Zvonko
title SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
title_short SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
title_full SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
title_fullStr SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
title_full_unstemmed SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
title_sort squares in euler triples from fibonacci and lucas numbers
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000200008
work_keys_str_mv AT 268erinzvonko squaresineulertriplesfromfibonacciandlucasnumbers
_version_ 1714206783967330304