SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
In this paper we shall continue to study from [4], for k = -1 and k = 5, the infinite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the product of any two different components...
Guardado en:
Autor principal: | Čerin,Zvonko |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000200008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers
por: Necdet Batir, et al.
Publicado: (2021) -
On square sum graphs
por: Germina,K. A., et al.
Publicado: (2013) -
On the generating matrices of the Ê-Fibonacci numbers
por: Falcon,Sergio
Publicado: (2013) -
Distance Fibonacci Polynomials by Graph Methods
por: Dominik Strzałka, et al.
Publicado: (2021) -
A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
por: Ray,Prasanta Kumar
Publicado: (2020)