Composition operators in hyperbolic general Besov-type spaces

In this paper we introduce natural metrics in the hyperbolic &#945;-Bloch and hyperbolic general Besov-type classes F*(p, q, s). These classes are shown to be complete metric spaces with respect to the corresponding metrics. Moreover, compact composition operators <img src="http:/fbpe/im...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: El-Sayed Ahmed,A, Bakhit,M. A
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000300003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper we introduce natural metrics in the hyperbolic &#945;-Bloch and hyperbolic general Besov-type classes F*(p, q, s). These classes are shown to be complete metric spaces with respect to the corresponding metrics. Moreover, compact composition operators <img src="http:/fbpe/img/cubo/v15n3/art03-fig5.jpg" name="_x0000_i1038" width=26 height=24 border=0 id="_x0000_i1038">acting from the hyperbolic &#945;-Bloch class to the class F*(p, q, s) are characterized by conditions depending on an analytic self-map <img src="http:/fbpe/img/cubo/v15n3/art03-fig6.jpg" name="_x0000_i1037" width=18 height=26 border=0 id="_x0000_i1037">: D<img src="http:/fbpe/img/cubo/v15n3/art03-fig1.jpg" name="_x0000_i1036" width=25 height=16 border=0 id="_x0000_i1036"> D.