Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces

The object of this work is to point out a fallacy in the proof of Theorem 1 contained in the recent paper of Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] proved in Non-Archimedean Menger PM-space by using the notions of sub-compatibility and sub-sequential contin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chauhan,Sunny, Pant,B. D, Imdad,Mohammad
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000300004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462013000300004
record_format dspace
spelling oai:scielo:S0719-064620130003000042018-10-08Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spacesChauhan,SunnyPant,B. DImdad,Mohammad t-norm ompatible mappings re ipro al ontinuity sub ompatible mappings subsequential ontinuity The object of this work is to point out a fallacy in the proof of Theorem 1 contained in the recent paper of Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] proved in Non-Archimedean Menger PM-space by using the notions of sub-compatibility and sub-sequential continuity. We show that the results of Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] an be recovered in two ways. Further, we establish some illustrative examples to show the validity of the main results. Our results improve a multitude of relevant fixed point theorems of the existing literature.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.15 n.3 20132013-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000300004en10.4067/S0719-06462013000300004
institution Scielo Chile
collection Scielo Chile
language English
topic t-norm
ompatible mappings
re ipro al ontinuity
sub ompatible mappings
subsequential ontinuity
spellingShingle t-norm
ompatible mappings
re ipro al ontinuity
sub ompatible mappings
subsequential ontinuity
Chauhan,Sunny
Pant,B. D
Imdad,Mohammad
Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces
description The object of this work is to point out a fallacy in the proof of Theorem 1 contained in the recent paper of Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] proved in Non-Archimedean Menger PM-space by using the notions of sub-compatibility and sub-sequential continuity. We show that the results of Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] an be recovered in two ways. Further, we establish some illustrative examples to show the validity of the main results. Our results improve a multitude of relevant fixed point theorems of the existing literature.
author Chauhan,Sunny
Pant,B. D
Imdad,Mohammad
author_facet Chauhan,Sunny
Pant,B. D
Imdad,Mohammad
author_sort Chauhan,Sunny
title Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces
title_short Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces
title_full Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces
title_fullStr Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces
title_full_unstemmed Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces
title_sort coincidence and common fixed point theorems in non-archimedean menger pm-spaces
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000300004
work_keys_str_mv AT chauhansunny coincidenceandcommonfixedpointtheoremsinnonarchimedeanmengerpmspaces
AT pantbd coincidenceandcommonfixedpointtheoremsinnonarchimedeanmengerpmspaces
AT imdadmohammad coincidenceandcommonfixedpointtheoremsinnonarchimedeanmengerpmspaces
_version_ 1714206785178435584