Euler’s constant, new classes of sequences and estimates

We give two classes of sequences with the argument of the logarithmic term modified and also with some additional terms besides those in the denition sequence, and that converge quickly to <img src="http:/fbpe/img/cubo/v15n3/art10-fig1.jpg" name="_x0000_i1043" width=380 height...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sînt&#259;m&#259;rian,Alina
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000300010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We give two classes of sequences with the argument of the logarithmic term modified and also with some additional terms besides those in the denition sequence, and that converge quickly to <img src="http:/fbpe/img/cubo/v15n3/art10-fig1.jpg" name="_x0000_i1043" width=380 height=40 border=0 id="_x0000_i1043">, where a <img src="http:/fbpe/img/cubo/v15n3/art05-fig7.jpg" name="_x0000_i1042" width=17 height=17 border=0 id="_x0000_i1042"> (0, + <img src="http:/fbpe/img/cubo/v15n3/art10-fig7.jpg" name="_x0000_i1041" width=18 height=13 border=0 id="_x0000_i1041">). We present the pattern in forming these sequences, expressing the coefficients that appear with the Bernoulli numbers. Also, we obtain estimates containing best constants for <img src="http:/fbpe/img/cubo/v15n3/art10-fig2.jpg" name="_x0000_i1040" width=507 height=41 border=0 id="_x0000_i1040">and <img src="http:/fbpe/img/cubo/v15n3/art10-fig3.jpg" name="_x0000_i1039" width=38 height=28 border=0 id="_x0000_i1039"><img src="http:/fbpe/img/cubo/v15n3/art10-fig4.jpg" name="_x0000_i1038" width=600 height=38 border=0 id="_x0000_i1038">, where <img src="http:/fbpe/img/cubo/v15n3/art10-fig5.jpg" name="_x0000_i1037" width=19 height=23 border=0 id="_x0000_i1037"> = <img src="http:/fbpe/img/cubo/v15n3/art10-fig5.jpg" name="_x0000_i1036" width=19 height=23 border=0 id="_x0000_i1036">(1) is the Euler&rsquo;s onstant.