VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS
The aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, w...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462014000100002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620140001000022018-10-08VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONSAoyama,KojiKimura,Yasunori Viscosity approximation method nonexpansive mapping fixed point hybrid steepest descent method The aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, we show some convergence theorems for variational inequality problems, zero point problems, and fixed point problems.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.16 n.1 20142014-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100002en10.4067/S0719-06462014000100002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Viscosity approximation method nonexpansive mapping fixed point hybrid steepest descent method |
spellingShingle |
Viscosity approximation method nonexpansive mapping fixed point hybrid steepest descent method Aoyama,Koji Kimura,Yasunori VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS |
description |
The aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, we show some convergence theorems for variational inequality problems, zero point problems, and fixed point problems. |
author |
Aoyama,Koji Kimura,Yasunori |
author_facet |
Aoyama,Koji Kimura,Yasunori |
author_sort |
Aoyama,Koji |
title |
VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS |
title_short |
VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS |
title_full |
VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS |
title_fullStr |
VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS |
title_full_unstemmed |
VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS |
title_sort |
viscosity approximation methods with a sequence of contractions |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2014 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100002 |
work_keys_str_mv |
AT aoyamakoji viscosityapproximationmethodswithasequenceofcontractions AT kimurayasunori viscosityapproximationmethodswithasequenceofcontractions |
_version_ |
1714206786659024896 |