VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS

The aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aoyama,Koji, Kimura,Yasunori
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462014000100002
record_format dspace
spelling oai:scielo:S0719-064620140001000022018-10-08VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONSAoyama,KojiKimura,Yasunori Viscosity approximation method nonexpansive mapping fixed point hybrid steepest descent method The aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, we show some convergence theorems for variational inequality problems, zero point problems, and fixed point problems.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.16 n.1 20142014-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100002en10.4067/S0719-06462014000100002
institution Scielo Chile
collection Scielo Chile
language English
topic Viscosity approximation method
nonexpansive mapping
fixed point
hybrid steepest descent method
spellingShingle Viscosity approximation method
nonexpansive mapping
fixed point
hybrid steepest descent method
Aoyama,Koji
Kimura,Yasunori
VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS
description The aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, we show some convergence theorems for variational inequality problems, zero point problems, and fixed point problems.
author Aoyama,Koji
Kimura,Yasunori
author_facet Aoyama,Koji
Kimura,Yasunori
author_sort Aoyama,Koji
title VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS
title_short VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS
title_full VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS
title_fullStr VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS
title_full_unstemmed VISCOSITY APPROXIMATION METHODS WITH A SEQUENCE OF CONTRACTIONS
title_sort viscosity approximation methods with a sequence of contractions
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2014
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100002
work_keys_str_mv AT aoyamakoji viscosityapproximationmethodswithasequenceofcontractions
AT kimurayasunori viscosityapproximationmethodswithasequenceofcontractions
_version_ 1714206786659024896