ON CERTAIN FUNCTIONAL EQUATION IN SEMIPRIME RINGS AND STANDARD OPERATOR ALGEBRAS

The main purpose of this paper is to prove the following result, which is related to a classical result of Chernoff. Let X be a real or complex Banach space, let L (X) be the algebra of all bounded linear operators on X and let A(X) C L (X) be a standard operator algebra. Suppose there exists a line...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Širovnik,Nejc
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462014000100007
record_format dspace
spelling oai:scielo:S0719-064620140001000072018-10-08ON CERTAIN FUNCTIONAL EQUATION IN SEMIPRIME RINGS AND STANDARD OPERATOR ALGEBRASŠirovnik,Nejc Prime ring semiprime ring Banach space standard operator algebra derivation Jordan derivation The main purpose of this paper is to prove the following result, which is related to a classical result of Chernoff. Let X be a real or complex Banach space, let L (X) be the algebra of all bounded linear operators on X and let A(X) C L (X) be a standard operator algebra. Suppose there exists a linear mapping D : A (X) ͢ L (X) satisfying the relation 2D (An) = D (An-1) A+An-1 D (A) + D (A) An-1+ AD (An-1) for all A e A (X), where n > 2 is some fixed integer. In this case D is of the form D (A) = [A, B] for all A e A (X) and some fixed B e L (X), which means that D is a linear derivation. In particular, D is continuous.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.16 n.1 20142014-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100007en10.4067/S0719-06462014000100007
institution Scielo Chile
collection Scielo Chile
language English
topic Prime ring
semiprime ring
Banach space
standard operator algebra
derivation
Jordan derivation
spellingShingle Prime ring
semiprime ring
Banach space
standard operator algebra
derivation
Jordan derivation
Širovnik,Nejc
ON CERTAIN FUNCTIONAL EQUATION IN SEMIPRIME RINGS AND STANDARD OPERATOR ALGEBRAS
description The main purpose of this paper is to prove the following result, which is related to a classical result of Chernoff. Let X be a real or complex Banach space, let L (X) be the algebra of all bounded linear operators on X and let A(X) C L (X) be a standard operator algebra. Suppose there exists a linear mapping D : A (X) ͢ L (X) satisfying the relation 2D (An) = D (An-1) A+An-1 D (A) + D (A) An-1+ AD (An-1) for all A e A (X), where n > 2 is some fixed integer. In this case D is of the form D (A) = [A, B] for all A e A (X) and some fixed B e L (X), which means that D is a linear derivation. In particular, D is continuous.
author Širovnik,Nejc
author_facet Širovnik,Nejc
author_sort Širovnik,Nejc
title ON CERTAIN FUNCTIONAL EQUATION IN SEMIPRIME RINGS AND STANDARD OPERATOR ALGEBRAS
title_short ON CERTAIN FUNCTIONAL EQUATION IN SEMIPRIME RINGS AND STANDARD OPERATOR ALGEBRAS
title_full ON CERTAIN FUNCTIONAL EQUATION IN SEMIPRIME RINGS AND STANDARD OPERATOR ALGEBRAS
title_fullStr ON CERTAIN FUNCTIONAL EQUATION IN SEMIPRIME RINGS AND STANDARD OPERATOR ALGEBRAS
title_full_unstemmed ON CERTAIN FUNCTIONAL EQUATION IN SEMIPRIME RINGS AND STANDARD OPERATOR ALGEBRAS
title_sort on certain functional equation in semiprime rings and standard operator algebras
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2014
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100007
work_keys_str_mv AT 352irovniknejc oncertainfunctionalequationinsemiprimeringsandstandardoperatoralgebras
_version_ 1714206787485302784