UPPER AND LOWER SOLUTIONS FOR Φ-LAPLACIAN THIRD-ORDER BVPs ON THE HALF LINE
In this paper, we investigate the existence of positive solution for a class of singular third-order boundary value problem associated with a Φ-Laplacian operator and posed on the positive half-line: <img border=0 width=657 height=130 src="http:/fbpe/img/cubo/v16n1/art10-01.jpg"...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100010 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, we investigate the existence of positive solution for a class of singular third-order boundary value problem associated with a Φ-Laplacian operator and posed on the positive half-line: <img border=0 width=657 height=130 src="http:/fbpe/img/cubo/v16n1/art10-01.jpg"> where μ > 0. By using the upper and lower solution approach and the fixed point theory, the existence of positive solutions is proved under a monotonic condition on f. The nonlinearity f may be singular at x = 0. An example of application is included to illustrate the main existence result. |
---|