UPPER AND LOWER SOLUTIONS FOR Φ-LAPLACIAN THIRD-ORDER BVPs ON THE HALF LINE

In this paper, we investigate the existence of positive solution for a class of singular third-order boundary value problem associated with a &#934;-Laplacian operator and posed on the positive half-line: <img border=0 width=657 height=130 src="http:/fbpe/img/cubo/v16n1/art10-01.jpg"...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Djebali,Smaïl, Saifi,Ouiza
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000100010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we investigate the existence of positive solution for a class of singular third-order boundary value problem associated with a &#934;-Laplacian operator and posed on the positive half-line: <img border=0 width=657 height=130 src="http:/fbpe/img/cubo/v16n1/art10-01.jpg"> where &#956; > 0. By using the upper and lower solution approach and the fixed point theory, the existence of positive solutions is proved under a monotonic condition on f. The nonlinearity f may be singular at x = 0. An example of application is included to illustrate the main existence result.