Voronovskaya type asymptotic expansions for multivariate quasi-interpolation neural network operators
Here we study further the multivariate quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. We derive multivariate Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operator.
Guardado en:
Autor principal: | Anastassiou,George A |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000200002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
por: Anastassiou,George A
Publicado: (2012) -
Higher Order Multivariate Fuzzy Approximation by basic Neural Network Operators
por: Anastassiou,George A
Publicado: (2014) -
Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
por: Anastassiou,George A.
Publicado: (2018) -
Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces
por: Koike,Naoyuki
Publicado: (2018) -
Approximation properties of a new family of Gamma operators and their applications
por: Reyhan Özçelik, et al.
Publicado: (2021)