Trisectors like Bisectors with equilaterals instead of Points

It is established that among all Morley triangles of /\ABC the only equilaterals are the ones determined by the intersections of the proximal to each side of /\ABC trisectors of either interior, or exterior, or one interior and two exterior angles. It is showed that these are in fact equilaterals, w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kuruklis,Spiridon A
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000200005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462014000200005
record_format dspace
spelling oai:scielo:S0719-064620140002000052018-10-08Trisectors like Bisectors with equilaterals instead of PointsKuruklis,Spiridon A Angle trisection Morley’s theorem Morley trisector theorem Morley triangle Morley interior equilateral Morley central equilateral Morley exterior equilateral Pasch’s axiom Morley’s magic Morley’s miracle Morley’s mystery It is established that among all Morley triangles of /\ABC the only equilaterals are the ones determined by the intersections of the proximal to each side of /\ABC trisectors of either interior, or exterior, or one interior and two exterior angles. It is showed that these are in fact equilaterals, with uniform proofs. It is then observed that the intersections of the interior trisectors with the sides of the interior Morley equilateral form three equilaterals. These along with Pasch’s axiom are utilized in showing that Morley’s theorem does not hold if the trisectors of one exterior and two interior angles are used in its statement.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.16 n.2 20142014-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000200005en10.4067/S0719-06462014000200005
institution Scielo Chile
collection Scielo Chile
language English
topic Angle trisection
Morley’s theorem
Morley trisector theorem
Morley triangle
Morley interior equilateral
Morley central equilateral
Morley exterior equilateral
Pasch’s axiom
Morley’s magic
Morley’s miracle
Morley’s mystery
spellingShingle Angle trisection
Morley’s theorem
Morley trisector theorem
Morley triangle
Morley interior equilateral
Morley central equilateral
Morley exterior equilateral
Pasch’s axiom
Morley’s magic
Morley’s miracle
Morley’s mystery
Kuruklis,Spiridon A
Trisectors like Bisectors with equilaterals instead of Points
description It is established that among all Morley triangles of /\ABC the only equilaterals are the ones determined by the intersections of the proximal to each side of /\ABC trisectors of either interior, or exterior, or one interior and two exterior angles. It is showed that these are in fact equilaterals, with uniform proofs. It is then observed that the intersections of the interior trisectors with the sides of the interior Morley equilateral form three equilaterals. These along with Pasch’s axiom are utilized in showing that Morley’s theorem does not hold if the trisectors of one exterior and two interior angles are used in its statement.
author Kuruklis,Spiridon A
author_facet Kuruklis,Spiridon A
author_sort Kuruklis,Spiridon A
title Trisectors like Bisectors with equilaterals instead of Points
title_short Trisectors like Bisectors with equilaterals instead of Points
title_full Trisectors like Bisectors with equilaterals instead of Points
title_fullStr Trisectors like Bisectors with equilaterals instead of Points
title_full_unstemmed Trisectors like Bisectors with equilaterals instead of Points
title_sort trisectors like bisectors with equilaterals instead of points
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2014
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000200005
work_keys_str_mv AT kuruklisspiridona trisectorslikebisectorswithequilateralsinsteadofpoints
_version_ 1714206788874665984