Higher Order Multivariate Fuzzy Approximation by basic Neural Network Operators

Here are studied in terms of multivariate fuzzy high approximation to the multivariate unit basic sequences of multivariate fuzzy neural network operators. These operators are multivariate fuzzy analogs of earlier studied multivariate real ones. The produced results generalize earlier real ones into...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Anastassiou,George A
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000300003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Here are studied in terms of multivariate fuzzy high approximation to the multivariate unit basic sequences of multivariate fuzzy neural network operators. These operators are multivariate fuzzy analogs of earlier studied multivariate real ones. The produced results generalize earlier real ones into the fuzzy setting. Here the high order multi-variate fuzzy pointwise convergence with rates to the multivariate fuzzy unit operator is established through multivariate fuzzy inequalities involving the multivariate fuzzy moduli of continuity of the Nth order (N <img border=0 width=28 height=21 src="http:/fbpe/img/cubo/v16n3/art03-a.jpg">1) H-fuzzy partial derivatives, of the engaged multivariate fuzzy number valued function.